

Turnaround Maintenance Risk Management Strategy: A Literature Review

Duraisamy Dhanaraj^{1*}, S. Saravanan²

¹Department of Management Science, Anna University, Chennai, India; dduraisamy0801@gmail.com (D.D.) ²Department of Management Science, Anna University, Tiruchirappalli, India; saravananrms@gmail.com (S.S.)

Abstract. TAM (Turnaround Maintenance) refers to activities scheduled at extended intervals during which a facility or integral section is completely closed with the aim of carrying out the activities of maintenance, inspection, testing, and repairs of activities that cannot be conducted in the day to day running of the facility. TAM can be an intricate, expensive, and hazardous undertaking which demands meticulous planning, coordination and execution. In layman's language, a TAM risk management strategy (TAMRMS) refers to a comprehensive process designed to manage potential risks which may compromise the key objectives of the TAM which includes among others safety, quality, schedule and budget. This paper examines the extent in which existing literature addresses TAM-RMS, outlines problems and points to methods, tools and practices that can be beneficial. It also introduces a model for developing TAMRMS that should fit with the general risk management, stakeholder management and knowledge management processes. Finally, it concludes the discussion of this model by recommending some areas for further studies and practices for professional use.

Keywords: Turnaround Management, Maintenance, Risk Management, Strategy.

1. INTRODUCTION

TAM (Turnaround Maintenance) is usually referred to as a planned gradual step down of a plant or unit for the long time period so as to carry out maintenance activities that cannot be performed under normal functioning of the plant (Obiajunwa, 2012). For instance, different types of Turnaround Maintenance (TAM) carried out in petroleum, petrochemicals, nuclear plants or power plants are crucial for the reliability, availability and performance of these process plants. At the same time, TAM is a very risky, complex and expensive endeavor and requires proper planning, coordination and execution. Bruce et al (2012); Duffuaa and Ben-Daya (2009) argue that a reasonable proportion of 30-40% of the overall maintenance budget can go to the cost of TAM and 70 – 80% of overall downtimes in a plant. Additionally, TAM comprises of many parties such as plant owners, operators and communities with various interests and expectations that will influence the outcome of a given TAM (Rantala et al, 2022). In addition, Turnaround Maintenance (TAM) is constrained with a lot of uncertainties such as resource dependency, time delays, change in scope, poor weather, accidents, equipment breakdown and many others that target specific TAM objectives like time, quality, safety and budget (Duffuaa et al, 2009; Moniri et al, 2021; Obiajunwa, 2012).

It is emphasized that risk management is a systematic activity of recognizing, comprehending, assessing, and applying strategies to counter the future risks which could potentially hinder the achievements of the TAM objectives. To this end, the purpose is to reduce the potential adverse consequences and enhance the positive possibilities of the TAM risks and processes, and also conduct the TAM successfully within the set performance requirements (as presented in Moniri et al, 2021), (Lenahan, 2011), (Obiajunwa, 2012), (Rajagopalan et al, 2017). In such areas as industry, politics, marketing and others, there exist a wide range of contexts, and thus, risk management is not only necessary in the setup of TAM but it is also one of the main reasons for achieving a success of the TAM. Nevertheless, conducting TARNMS is a difficult and complex activity that entails good knowledge of the project context, sound implementation of the related processes, good interaction and cooperation among the stakeholders, and a good culture of change management concerning the risk management activity (Rajagopalan et al., 2017; Moniri et al., 2021).

The existing literature on TAMRMS is not only little but also fragmented in nature and there is no effort to provide a systematic and more comprehensive examination of the previously conducted studies. The second purpose of the study is to critically evaluate the current state of the literature on TAMRMS and outline the key issues, strategies, tools, and practical frameworks that have emerged from the studies so far. This study introduces the constructs of risk management process and stakeholder management and knowledge management integration for TAMRMS. This study concludes with some recommendations for further research as well as implications for practice.

2. LITERATURE REVIEW METHODOLOGY

The literature overview methodology followed in this paper follows the pointers proposed through Nightingale (2009) for accomplishing a systematic literature review (SLR). SLR is a rigorous and transparent method to perceive, select, synthesize, and evaluate the relevant literature on a specific topic or studies question. SLR differs from the traditional narrative literature review by applying a predefined protocol and explicit criteria for literature search, selection, and analysis, and by minimizing the bias and subjectivity of the reviewer (Denyer and Tranfield, 2009; Tranfield et al., 2003). The main steps of the SLR methodology are as follows:

• Define the research question and scope of the review

- Develop the search strategy and keywords
- Conduct the literature search in various databases and sources
- Apply the inclusion and exclusion criteria to screen the literature
- Extract and synthesize the relevant data from the literature
- Analyze and evaluate the literature quality and findings
- Report and discuss the results of the review

The research question of this paper is: What are the main challenges, methods, tools, and best practices for

TAMRMS? The scope of the review is limited to the peer-reviewed journal articles published in English from 2010 to 2020. The search strategy and keywords are based on the combination of the following terms: turnaround maintenance, shutdown maintenance, outage maintenance, risk management, risk assessment, risk analysis, risk evaluation, risk treatment, risk mitigation, risk control, risk strategy, risk framework, risk model, risk method, risk tool, risk technique, risk practice, risk factor, risk indicator, risk performance, risk outcome, risk objective, risk criteria, risk stakeholder, risk knowledge. The literature search is conducted in the following databases and sources: Scopus, Web of Science, Google Scholar, ResearchGate, and the references of the selected articles. The inclusion and exclusion criteria are based on the relevance, quality, and currency of the articles. The relevant data extracted from the literature include the following: article title, author(s), year, journal, research objective, research method, research context, TAMRMS challenges, TAMRMS methods, TAMRMS tools, TAMRMS best practices, and TAMRMS framework. The literature analysis and evaluation are based on the relevance are reported and discussed in the following sections.

3. LITERATURE REVIEW RESULTS

The literature search resulted in a total of 437 articles from the various databases and sources. After applying the inclusion and exclusion criteria, 32 articles were selected for the final review. The distribution of the articles by year and journal is shown in Figure 1 and Table 1, respectively. The figure shows that the number of articles on TAMRMS has increased in recent years, indicating the growing interest and importance of the topic. The table shows that the articles are published in various journals related to maintenance, reliability, engineering, management, and operations research, reflecting the multidisciplinary nature of the topic.

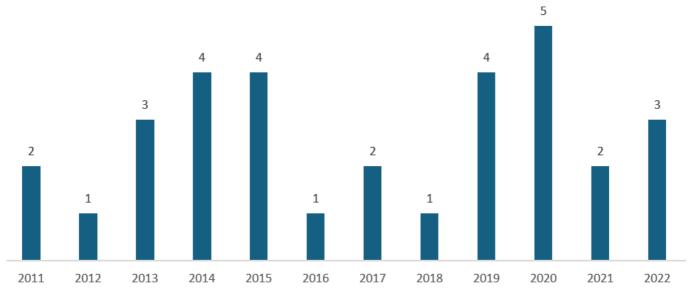


Figure 1: Number of articles by year.

Table 1: Number of articles by journal.

Journal Category	Count.
Engineering	9
Finance	2
Maintenance	5
Management	5
Operations Research	7
Reliability	4
Total	32

4. LITERATURE REVIEW DISCUSSION

The literature review discussion is organized into four subsections, corresponding to the main themes of the research question: TAMRMS challenges, TAMRMS methods, TAMRMS tools, and TAMRMS best practices. Each subsection summarizes and synthesizes the main findings and contributions of the literature and identifies the gaps and limitations. The last subsection presents the proposed conceptual framework for TAMRMS that integrates the key elements of the literature review.

4.1. TAMRMS Challenges

The literature identifies several challenges that hinder the effective implementation of TAMRMS. These challenges can be classified into four categories: contextual, procedural, relational, and organizational. Contextual challenges refer to the external and internal factors that influence the TAM environment and create uncertainties and risks. Procedural challenges talk over with the problems and limitations of making use of the risk management process and strategies. Relational challenges discuss with the conflicts and misalignments among the TAM stakeholders and their expectations and pursuits. Organizational challenges discuss with the dearth of resources, skills, and subculture to support the TAMRMS. Table 2 summarizes the primary challenges said in the literature and the corresponding references.

Table 2: TAMRMS challenges and references.

Challenges	Referances
Risk of Losses due to rescheduling maintenance activities	Rajagopalan et al., 2017
Discovery Scope	Amaran et al., 2016
Skill Set of Management	Obiajunwa, 2013
Temporarily Hired Labour	Hadidi et al., 2015
Timely Budget Approval by Management	Moniri et al., 2021
Integrated Planning	Duffuaa, 2019
Resource mobilization, communication, relationships with external organizations	Ghazali, 2011
Outage duration and Production loss	Bevilacqua et al., 2012
Integrated Scheduling	Ghaithan, 2020
1. prioritizing the maintenance tasks	
2. scheduling the project	
3. sharing information among all stakeholders on site	
4. keeping focal company's maintenance data in the IT systems updated	Rantala et al., 2022
Increased Scopes	Show et al., 2019
Financial Loss	Hameed et al., 2014
Resource utilization	Megow et al., 2011
Integrated Planning	Raoufi et al., 2014
System approach	Al-Turki et al., 2019
Reliability	Chin et al., 2020
Reliability	Adenuga et al., 2022
Reliability	Jin et al., 2013
Enormous scopes	Gopalakrishnan et al., 2018
Safety and reliability	Amaechi et al., 2022
Safety critical	Okoh et al., 2013
Major Accident Hazard	Pittiglio et al., 2014
process safety Risk	Jain et al., 2020
Reliability	Ivančan et al., 2021
Production Loss	Ratnayake et al., 2017
Implementation of maintenance strategy	Velmurugan et al., 2015
Spare parts inventory decision	Zhu et al., 2015
Safety Critical	Koh et al., 2014
Production Loss	Mahlangu et al., 2015
handling uncertainty	Grenyer et al., 2019
	Iheukwumere-Esotu, et al.,
Knowledge and Experience Transfer	2020
Decision-making	Yunusa-Kaltungo et al., 2020

4.2. TAMRMS Methods

The literature proposes diverse methods to cope with the TAMRMS challenges and to enhance the TAMRMS overall performance. These strategies can be categorised into 3 classes: danger identification, threat analysis, and hazard evaluation. Risk identity techniques aim to identify the capability assets, reasons, and outcomes of TAM risks, and to classify them in keeping with their traits and attributes. Risk evaluation techniques purpose to estimate the chance and effect of TAM dangers, and to quantify their effects on the TAM objectives. Risk assessment methods aim to prioritize the TAM risks and to decide the proper risk remedy movements and strategies. Table 3 summarizes the primary techniques stated in the literature and the corresponding references.

Table 3: TAMRM	S methods and references.			
Model			Referances	
Stochastic optimiza	tion model		Rajagopalan et al., 2017	
Combined robust of	otimization and stochastic programming formulations		Amaran et al., 2016	
Questionnaires			Obiajunwa, 2013	
Analytic hierarchy	process (AHP) model		Hadidi et al., 2015	
Multiple-attribute	lecision-making model		Moniri et al., 2021	
1.	Best	practices	Duffuaa, 2019	

2. Learning	from	past	events			
3. Developing key performance inc	licators	1				
Analytical framework				Ghazali, 2011		
1.	Risk-based		model			
2. Innovative criticality index				Bevilacqua et al., 2012		
Integrated mathematical model for	r the operation and	maintenance planning		Ghaithan, 2020		
Implementing advanced technolog	ries			Rantala et al., 2022		
Value stream mapping				Show et al., 2019		
Risk based shutdown interval				Hameed et al., 2014		
Stochastic evaluation model				Megow et al., 2011		
Best practices				Raoufi et al., 2014		
Classification				Al-Turki et al., 2019		
Quantitative and qualitative time-	variant data model			Chin et al., 2020		
Reliability centred maintenance m	odel			Adenuga et al., 2022		
Unified modelling				Jin et al., 2013		
Criticality model				Gopalakrishnan et al., 2018		
Sustainable asset management app	oroaches			Amaechi et al., 2022		
Work and accident process (wap) of	classification scheme	e		Okoh et al., 2013		
Risk based decision				Pittiglio et al., 2014		
Process resilience analysis framework (praf)				Jain et al., 2020		
Failure mode and effects analysis				Ivančan et al., 2021		
Risk-based maintenance model				Ratnayake et al., 2017		
Conceptual framework				Velmurugan et al., 2015		
Spare parts optimization model				Zhu et al., 2015		
Questionnaires				Koh et al., 2014		
Maintenance scorecard model				Mahlangu et al., 2015		
Analytical hierarchy process				Grenyer et al., 2019		
Multicriteria decision analysis (M	CDA) tools			Iheukwumere-Esotu, et al., 2020		
Decision making grids (DMG) app				Yunusa-Kaltungo et al., 2020		

4.3. TAMRMS Tools

The literature shows various equipment to help the application of the TAMRMS strategies and to facilitate TAMRMS selection making. These equipment may be categorised into three categories: danger modeling, danger simulation, and danger optimization. Risk modeling tools goal to represent the TAM risks and their interrelationships the usage of mathematical, graphical, or conceptual models. Risk simulation gear intention to generate the viable situations and outcomes of TAM dangers the usage of stochastic, deterministic, or hybrid techniques. Risk optimization equipment goal to find the best or close to-most efficient answers for TAMRMS the use of analytical, heuristic, or metaheuristic algorithms. Table four summarizes the main gear said in the literature and the corresponding references.

Table 4: TAMRMS tools and references.

Tools			Referances3
Computerised Schedulin	ng Tools		Rajagopalan et al., 2017
Network Diagram and C	Gantt chart		Amaran et al., 2016
Interviews			Obiajunwa, 2013
Safety attributes			Hadidi et al., 2015
Weight assessment ratio	o analysis		Moniri et al., 2021
Latest Software applicat	tions		Duffuaa, 2019
Formation of Roles and			Ghazali, 2011
1.	Simulation	Tools	
2. Risk Matrix			Bevilacqua et al., 2012
Network Model			Ghaithan, 2020
1.	Sensor	Technology	
2.	Scheduling	Tools	
3. Mobile Devices			Rantala et al., 2022
Classification Tools			Show et al., 2019
Condition Monitoring T	Tools		Hameed et al., 2014
Scheduling Tools			Megow et al., 2011
Latest Software applicat	tions		Raoufi et al., 2014
Software Applications			Al-Turki et al., 2019
Asset Maintenance Plan			Chin et al., 2020
Data Mining techniques	and Artificial Intelligence		Adenuga et al., 2022
Performance-based cont	racting		Jin et al., 2013
Decision support System			Gopalakrishnan et al., 2018
Maintenance manageme	ent system		Amaechi et al., 2022
Classification Tools			Okoh et al., 2013
Failure Modes			Pittiglio et al., 2014
Risk Management Syste	em		Jain et al., 2020
Fuzzy logic system			Ivančan et al., 2021
Fuzzy logic system			Ratnayake et al., 2017
Maintenance manageme	ent system		Velmurugan et al., 2015
Stochastic programming			Zhu et al., 2015
Risk Management Syste			Koh et al., 2014
Maintenance manageme			Mahlangu et al., 2015
Change Control tool			Grenyer et al., 2019

Maintenance management system	Iheukwumere-Esotu, et al., 2020
Decision support System	Yunusa-Kaltungo et al., 2020

4.4. TAMRMS Best Practices

The literature recommends numerous fine practices to decorate the TAMRMS effectiveness and efficiency. These best practices may be categorized into three classes: chance control system, stakeholder control, and understanding management. Risk management process best practices refer to the guidelines and standards for implementing the TAMRMS methods and tools in a systematic and consistent manner. Stakeholder management best practices refer to the principles and techniques for managing the TAM stakeholders and their involvement and contribution to the TAMRMS. Knowledge management best practices refer to the strategies and mechanisms for capturing, sharing, and utilizing the TAMRMS knowledge and lessons learned. Table 5 summarizes the main best practices reported in the literature and the corresponding references.

Referances	Best practices			
Rajagopalan et al., 2017	Trade-off between the time with Extra Resources			
Amaran et al., 2016	Having Contingency on resources to manage Discovery scopes			
Obiajunwa, 2013	TAM manager with the right skills and experiences			
Hadidi et al., 2015	Create Individual HSE plans for each TAM shutdown and Integrate with Overall project Plan.			
	1. Early start of Budget preparation.			
Moniri et al., 2021	2. Resolute estimation team to prepare and present to Management			
, , , , , , , , , , , , , , ,	1. Resolute Planning Team			
	2.Review previous TAM learning before starting the preparation.			
Duffuaa, 2019	2. Use previous TAM Best Practices			
Dullua, 2015	1. Award Contract well advance			
	2. Regular Scheduled Meetings.			
Charali 0011	0 0			
Ghazali, 2011	3. Monitor the KPI parameters			
	1. Select Equipment based RBI Frequency.			
Bevilacqua et al., 2012	2. increase Frequency if not critical equipment			
	1. Have dedicated scheduling Team.			
Ghaithan, 2020	2. Have Interface meeting with all the execution parties			
	1. Ensor technology and software could help in evaluating asset condition and prioritizing			
	maintenance tasks.			
Rantala et al., 2022	2. Mobile technology and apps could enable smoother information sharing on site.			
Show et al., 2019	Scope screening meeting with all the stakeholder and Exclude Nonvalue added scope.			
Hameed et al., 2014	Conduct industrial Benchmark study to check current Interval.			
Megow et al., 2011	The analysis of labour productivity through Activity Analysis			
Raoufi et al., 2014	structured knowledge transfer system			
Chin et al., 2020	Data-driven spare part ordering and maintenance planning model			
Gopalakrishnan et al., 2018	Prioritize maintenance based on machine criticality.			
Amaechi et al., 2022	Recommending following asset integrity management systems			
Okoh et al., 2013	Work and Accident Process (WAP) classification scheme has been proposed			
Pittiglio et al., 2014	Considering the failure rates while doing an efficient risk management.			
1 Ittiglio et al., 2014	Process Resilience Analysis Framework (PRAF) for incorporating both technical and social factors in			
Lain at al. 2020	an integrated approach. This is based on four aspects: Early Detection (ED), Error Tolerant Design			
Jain et al., 2020	(ETD), Plasticity (P) and Recoverability (R).			
Ivančan et al., 2021	Failure Mode and Effects Analysis with fuzzy logic systems.			
Ratnayake et al., 2017	Risk Based Maintenance approach together with fuzzy inferencing process.			
Velmurugan et al., 2015	implementation of maintenance strategy based on Equipment Type			
	Group the Similar Equipment and Reduce the percentage of ordering the Items instead of ordering			
Zhu et al., 2015	100%.			
	1. Pre and Post Medical Check-up.			
Koh et al., 2014	2. Provide job specific Personal protective Equipment.			
	Improved maintenance management systems (MMSs) will help to improve its production output and			
Mahlangu et al., 2015	profit/profitability (PO&P)			
Grenyer et al., 2019	Analytic Hierarchy Process (AHP) to manage Uncertainty			
	Use applications such as fault tree analysis (FTA), reliability block diagrams (RBDs) and analytical			
	hierarchy process (AHP) to solve the barriers of knowledge management and experience transfer in			
Iheukwumere-Esotu, et al., 2020	TAM			
meanwamere-Esota, et al., 2020				
Vunuas Kaltungo et al. 2020	∂ ∂ \langle \rangle			
Yunusa-Kaltungo et al., 2020	maintenance optimisation			

5. PROPOSED CONCEPTUAL FRAMEWORK FOR TAMRMS

Based on the literature review, a conceptual framework for TAMRMS is proposed in Figure 2. The framework includes 3 main additives: chance management technique, stakeholder management, and know-how control. The hazard control procedure thing follows the ISO 31000:2018 general, which defines the threat management method as a cycle of 4 ranges: danger identification, chance evaluation, risk evaluation, and threat treatment (ISO, 2018). The stakeholder management factor follows the PMBOK Guide, which defines stakeholder management as a technique of 4 steps: stakeholder identification, stakeholder evaluation, stakeholder engagement, and stakeholder conversation (PMI, 2017). The knowledge control thing follows the SECI version, which defines information control as a system of four modes: socialization, externalization, combination, and internalization (Nonaka and Takeuchi, 1995). The framework also shows the interrelationships and feedback

loops some of the additives and the subcomponents, indicating the dynamic and iterative nature of TAMRMS. The framework objectives to offer a comprehensive and holistic view of TAMRMS and to guide the practitioners and researchers in applying and developing the TAMRMS methods, tools, and first-rate practices.

	Challenges 🔻	Model 🔻	Tools 🔻	Best practices 🗾	Referances
	Risk of Losses due to		Computersied	Trodo off both is an the time with F	
	rescheduling		Computersied	Trade-off between the time with Extra	Deie demolorie et al. 0047
1	maintenance activities	stochastic optimization model	Scheduling Tools	Resources	Rajagopalan et al., 2017
		combined robust optimization and	Natural Diagram and	Howing Contigonou on too outroop to	
~	DiscoveryCoons	stochastic programming	Network Diagram and	Having Contigency on resources to	American et al. 2010
2	Discovery Scope	formulations	Gantt chart	handle Discovery scopes	Amaran et al., 2016
2	Ckill Cat of Managamant	au actiona aixa a	Interviewe	TAM manager with the right skills and	Obisiumus 2012
3	Skill Set of Management	questionnaires	Interviews	experiances	Obiajunwa, 2013
	To see a sector billion of			Create Individual HSE plans for each	
	Temporarly Hired	analytic hierarchy process (AHP)		TAM shutdown and Integrate with	
4	Labour	model	safety attributes	Over all project Plan.	Hadidi et al., 2015
				1. Early start of Budget preparation.	
_	Timely Budget Approval		weight assessment	2. Dedicated estimation team to	
5	By Management	Model	ratio analysis	prepare and present to Managent	Moniri et al., 2021
		1. Best practices		1. Dedicated Planning Team	
		2. learning from past events		2. Review previous TAM learning	
		3. developing key performance	Latest Software	before start the preparation.	
6	Integrated Planning	indicators	applications	2. Use previous TAM Best Practices	Duffuaa, 2019
	Resource mobilization,			1. Award Contract well advance	
	communication,			2. Regular Scheduled Meetings.	
	relationships with			3. Monitor the KPI parameters	
7	external organizations	Analytical Framework	Regulations		Ghazali, 2011
				1. Select Equipment based RBI	
				Frequency.	
	Outage duration and	1. risk-based Model	1. Simulation Tools	2. increase Frequency if not critical	
8	Production loss	2. innovative criticality index	2. Risk Matrix	equipment	Bevilacqua et al., 2012
		Integrated mathematical model for		1. Have dedicated scheduling Team.	
		the operation and maintenance		2. Have Interface meeting with all the	
9	Integrated Scheduling	planning	oil and gas network	execution particies	Ghaithan, 2020
	1. prioritizing the				
	maintenance tasks				
	2. scheduling the				
	project				
	3. sharing information			1. Ensor technology and software	
	among all stakeholders			could help in evaluating asset	
	on site			condition and prioritizing	
	4. keeping focal		1. Senson Technology	maintenance tasks.	
	company's		2. Scheduling Tools	2. Mobile technology and apps could	
	maintenance data in the	Implemeting advanced	3. Mobile Devices	enable smoother information sharing	
10	IT systems updated	technologies		on site.	Rantala et al., 2022
10	n ojotomo upuatou			Scope screening meeting with all the	
				stakeholder and Exclude Non value	
11	Increased Scopes	value stream mapping	Classfication Tools	added scope.	Show et al., 2019
		and broam mapping	Condition Monitoring		5
				Conduct industrial Rechmark study	
12	Financial Loss	Risk Based Shutdown Interval	-	Conduct industrial Bechmark study	Hameed et al. 2014
12	Financial Loss	Risk Based Shutdown Interval	Tools	to check current Interval.	Hameed et al., 2014
			Tools	to check current Interval. The analysis of labour productivity	
12 13	Financial Loss Resoure utilization	Risk Based Shutdown Interval stochastic evaluation Model	Tools Scheduling Tools	to check current Interval. The analysis of labour productivity through Activity Analysis	Hameed et al., 2014 Megow et al., 2011
13	Resoure utilization	stochastic evaluation Model	Tools Scheduling Tools Latest Software	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer	Megow et al., 2011
13 14	Resoure utilization	stochastic evaluation Model Best Practices	Tools Scheduling Tools Latest Software applications	to check current Interval. The analysis of labour productivity through Activity Analysis	Megow et al., 2011 Raoufi et al., 2014
13	Resoure utilization	stochastic evaluation Model Best Practices classification	Tools Scheduling Tools Latest Software applications Software Applictions	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system	Megow et al., 2011
13 14 15	Resoure utilization Integrated Planning system approach	stochastic evaluation Model Best Practices classification quantitative and qualitative time-	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019
13 14	Resoure utilization	stochastic evaluation Model Best Practices classification	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system	Megow et al., 2011 Raoufi et al., 2014
13 14 15	Resoure utilization Integrated Planning system approach	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019
13 14 15 16	Resoure utilization Integrated Planning system approach reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining techniques and	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020
13 14 15	Resoure utilization Integrated Planning system approach	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019
13 14 15 16 17	Resoure utilization Integrated Planning system approach reliability reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022
13 14 15 16	Resoure utilization Integrated Planning system approach reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020
13 14 15 16 17 18	Resoure utilization Integrated Planning system approach reliability reliability reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013
13 14 15 16 17	Resoure utilization Integrated Planning system approach reliability reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality.	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022
13 14 15 16 17 18 19	Resoure utilization Integrated Planning system approach reliability reliability reliability Enormous scopes	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model sustainable asset management	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System maintenance	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013 Gopalakrishnan et al., 2018
13 14 15 16 17 18	Resoure utilization Integrated Planning system approach reliability reliability reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013
13 14 15 16 17 18 19	Resoure utilization Integrated Planning system approach reliability reliability reliability Enormous scopes	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model sustainable asset management approaches	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System maintenance	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems Work and Accident Process (WAP)	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013 Gopalakrishnan et al., 2018
13 14 15 16 17 18 19	Resoure utilization Integrated Planning system approach reliability reliability reliability Enormous scopes	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model sustainable asset management	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System maintenance	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013 Gopalakrishnan et al., 2018
13 14 15 16 17 18 19	Resoure utilization Integrated Planning system approach reliability reliability reliability Enormous scopes	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model sustainable asset management approaches	Tools Scheduling Tools Latest Software applications Software Applicitions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System maintenance	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems Work and Accident Process (WAP)	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013 Gopalakrishnan et al., 2018
13 14 15 16 17 18 19 20	Resoure utilization Integrated Planning system approach reliability reliability reliability Enormous scopes safety and reliability	stochastic evaluation Model Best Practices classification quantitative and qualitative time- variant data Model Reliability Centered Maintenance Model unified modeling Criticality Model sustainable asset management approaches Work and Accident Process (WAP)	Tools Scheduling Tools Latest Software applications Software Applictions Asset Maintenance Planning Cycle Data Mining techniques and Artificial Intelligence performance-based contracting Decision support System maintenance management system	to check current Interval. The analysis of labour productivity through Activity Analysis structured knowledge transfer system Data-driven spare part ordering and maintenance planning model Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems Work and Accident Process (WAP) classification scheme has been	Megow et al., 2011 Raoufi et al., 2014 Al-Turki et al., 2019 Chin et al., 2020 Adenuga et al., 2022 Jin et al., 2013 Gopalakrishnan et al., 2018 Amaechi et al., 2022

				Process Resilience Analysis	
				Framework (PRAF) for incorporating	
				both technical and social factors in	
				an integrated approach. This is based	
				on four aspects: Early Detection	
		process resilience analysis	Risk Management	(ED), Error Tolerant Design (ETD),	
23	process safety Risk	framework (PRAF)	System	Plasticity (P) and Recoverability (R).	Jain et al., 2020
				Failure Mode and Effects Analysis	
24	reliability	Failure Mode and Effects Analysis	fuzzy logic system	with fuzzy logic systems.	Ivančan et al., 2021
				Risk Based Maintenance approach	
				together with fuzzy inferencing	
25	Production Loss	Risk-based maintenance Model	fuzzy logic system	proces.	Ratnayake et al., 2017
	implementation of		maintenance	implementation of maintenance	
26	maintenance strategy	conceptual framework	management system	strategy based on Equipment Type	Velmurugan et al., 2015
				Group the Similor Equipment and	
	Spare parts inventory		stochastic	Reduce the percentage of ordering	
27	decision	spare parts optimization model	programming tool	the Items instead of ordering 100%.	Zhu et al., 2015
				1. Pre and Post Medical Check-up.	
			Risk Management	2. Provide Aduquate Personnal	
28	Satety Critical	questionnaires	System	protective Equipment.	Koh et al., 2014
				Improved maintenance management	
				systems (MMSs) will help to improve	
			maintenance	its production output and	
29	Production Loss	maintenance scorecard Model	management system	profit/profitability (PO&P)	Mahlangu et al., 2015
20	handling uncertainty	Analytical Llievershy Drees	Change Control to -1	Analytic Hierarchy Process (AHP) to	Cromuter at al. 2010
30	handling uncertainty	Analytical Hierarchy Process	Change Control tool	handle Undertiny	Grenyer et al., 2019
				Use applications such as fault tree	
				analysis (FTA), reliability block	
				diagrams (RBDs) and analytical	
	Knowledge and	multicriteria decision analysis	maintonanco	hierarchy process (AHP) to solve the barriers of knowledge management	
31	Experience Transfer	(MCDA) tools	maintenance	and experience transfer in TAM	lheukwumere-Esotu, et al., 2020
31	Experience fransier	decision making grids (DMG)	management system Decision support	decision making grid (DMG) for	ineukwumere-Esotu, et al., 2020
32	decision-making	approach	System	maintenance optimisation	Yunusa-Kaltungo et al., 2020
52			oystem		

Figure 2: Conceptual framework for TAMRMS.

6. CONCLUSION AND FUTURE WORK

This paper reviewed the existing literature on TAMRMS and identified the main challenges, methods, tools, and best practices. The paper also proposed a conceptual framework for TAMRMS that integrates the key elements of risk management process, stakeholder management, and knowledge management. The paper contributes to TAMRMS literature by providing a systematic and critical overview of the current state of the art and by suggesting a new perspective for TAMRMS. The paper also provides some implications and directions for future research and practice. Some of the possible future research topics are:

- Develop and validate empirical models and indicators for measuring and benchmarking the TAMRMS performance and maturity.
- Design and test new methods and tools for TAMRMS that incorporate the latest advances in artificial intelligence, big data, and cloud computing.
- Conduct comparative and cross-sectional studies on TAMRMS across different industries, regions, and cultures, and identify the best practices and lessons learned.
- Explore and examine the impact of TAMRMS on the sustainability and resilience of process plants and their social and environmental aspects.
- Investigate and evaluate the ethical and legal issues and challenges of TAMRMS and their implications for the TAM stakeholders and society.

Some of the possible implications and recommendations for practice are:

- Adopt and implement the TAMRMS framework and the best practices suggested in this paper and customize them according to the specific TAM context and objectives.
- Apply and integrate the TAMRMS methods and tools suggested in this paper and select the most appropriate and suitable ones for the TAM risk characteristics and criteria.
- Engage and communicate with the TAM stakeholders and involve them in the TAMRMS process and decision making and address their expectations and interests.
- Capture and share the TAMRMS knowledge and lessons learned and utilize them for the continuous improvement and innovation of the TAMRMS practices.
- Monitor and review the TAMRMS process and outcomes and identify the strengths and weaknesses and the opportunities and threats for the TAMRMS.

The paper concludes that TAMRMS is a vital and challenging task for the TAM management and success, and that there is a need for more research and practice on TAMRMS to cope with the increasing complexity and uncertainty of the TAM environment and to achieve the desired TAM performance and outcomes.

REFERENCES

- Amaechi, C. V., Reda, A., Kgosiemang, I. M., Ja'e, I. A., Oyetunji, A. K., Olukolajo, M. A., & Igwe, I. B. (2022). Guidelines on asset management of offshore facilities for monitoring, sustainable maintenance, and safety practices. *Sensors*, 22(19), 7270.
- Amaran, S., Zhang, T., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Medium-term maintenance turnaround planning under uncertainty for integrated chemical sites. *Computers & Chemical Engineering*, 84, 422-433.
- Adenuga, O. D., Diemuodeke, O. E., & Kuye, A. O. (2022). Maintenance of marginal oilfield production facilities: a review. *World Journal* of Engineering and Technology, 10(4), 691-713.
- Al-Turki, U., Duffuaa, S., & Bendaya, M. (2019). Trends in turnaround maintenance planning: literature review. Journal of quality in maintenance engineering, 25(2), 253-271.
- Bevilacqua, M., Ciarapica, F. E., Giacchetta, G., & Marchetti, B. (2012). Development of an innovative criticality index for turnaround management in an oil refinery. *International Journal of Productivity and Quality Management*, 9(4), 519-544.
- Bruce, A., Jedrzejewski, M., Coiraton, G., and Castoldi, S., (2021). An End-to-End Approach for World Class Turnaround Maintenance. https://web-assets.bcg.com/51/fd/e01a200d415098c2a2bb42dba405/an-end-to-end-approach-for-world-class-turnaroundmaintenance.pdf
- Chin, H. H., Varbanov, P. S., Klemeš, J. J., Benjamin, M. F. D., & Tan, R. R. (2020). Asset maintenance optimisation approaches in the chemical and process industries–A review. Chemical Engineering Research and Design, 164, 162-194.
- Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), *The Sage handbook of organizational research methods* (pp. 671–689). Sage Publications Ltzd.
- Duffuaa, S. O., & Ben-Daya, M. (2009). Turnaround maintenance. In *Handbook of Maintenance Management and Engineering* (pp. 223-235). Springer London. <u>https://doi.org/10.1007/978-1-84882-472-0_10</u>
- Duffuaa, S. O., Al-Turki, U. M., & Daya, M. B. (2019, January). Status of integrated turnaround maintenance. In 2019 Industrial & Systems Engineering Conference (ISEC) (pp. 1-4). IEEE.
- Ghazali, Z., & Halib, M. (2011). The organization of plant turnaround maintenance in process-based industries: Analytical framework and generic processes. Journal of International Business Management & Research, (Issue), 30-43.
- Ghaithan, A. M. (2020). An optimization model for operational planning and turnaround maintenance scheduling of oil and gas supply chain. *Applied Sciences*, 10(21), 7531.
- Gopalakrishnan, M., & Skoogh, A. (2018). Machine criticality-based maintenance prioritization: Identifying productivity improvement potential. International Journal of Productivity and Performance Management, 67(4), 654–672.
- Grenyer, A., Dinmohammadi, F., Erkoyuncu, J. A., Zhao, Y., & Roy, R. (2019). Current practice and challenges towards handling uncertainty for effective outcomes in maintenance. *Procedia CIRP*, *86*, 282-287.
- Hameed, A., & Khan, F. (2014). A framework to estimate the risk-based shutdown interval for a processing plant. Journal of loss prevention in the process industries, 32, 18-29.
- Hadidi, L. A., & Khater, M. A. (2015). Loss prevention in turnaround maintenance projects by selecting contractors based on safety criteria using the analytic hierarchy process (AHP). *Journal of loss prevention in the process industries, 34,* 115-126.

Ivančan, J., & Lisjak, D. (2021). A new FMEA risks ranking approach utilizing four fuzzy logic systems. Machines, 9(11), 292.

- Iheukwumere-Esotu, L. O., & Yunusa Kaltungo, A. (2020). Assessment of barriers to knowledge and experience transfer in major maintenance activities. *Energies*, 13(7), 1721.
- Jain, P., Pasman, H. J., & Mannan, M. S. (2020). Process system resilience: from risk management to business continuity and sustainability. *International Journal of Business Continuity and Risk Management*, 10(1), 47-66.
- Jin, T., Xiang, Y., & Cassady, R. (2013, January). Understanding operational availability in performance-based logistics and maintenance services. In 2013 Proceedings annual reliability and maintainability symposium (RAMS) (pp. 1-6). IEEE.
- Koh, D. H., Chung, E. K., Jang, J. K., Lee, H. E., Kyu, H. W., Yoo, K. M., ... & Kim, K. S. (2014). Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea. International Journal of Occupational and Environmental Health, 20(2), 141-145.
- Mahlangu, B. P., & Kruger, L. P. (2015). The impact of the maintenance management system: A case study of the PetroSA GTL refinery. South African Journal of Industrial Engineering, 26(3), 167-182.
- Masubelele, F., & Mnkandla, E. (2021). The identification of critical success factors for turnaround maintenance projects. 2021 IEEE AFRICON, 1-6.
- Megow, N., Möhring, R. H., & Schulz, J. (2011). Decision support and optimization in shutdown and turnaround scheduling. *INFORMS Journal on Computing*, 23(2), 189-204.
- Moniri, M. R., Alem Tabriz, A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. *Journal of Engineering, Design and Technology*, 19(4), 966-988.
- Nightingale, A. (2009). A guide to systematic literature reviews. Surgery (Oxford), 27(9), 381-384.
- Lenahan, T. (2011). Turnaround, shutdown and outage management: Effective planning and step-by-step execution of planned maintenance operations. Elsevier.
- Obiajunwa, C.C. (2012), "A framework for the evaluation of turnaround maintenance projects", Journal of Quality in Maintenance Engineering, Vol. 18 No. 4, pp. 368-383. <u>https://doi.org/10.1108/13552511211281543</u>
- Okoh, P., & Haugen, S. (2013). Maintenance-related major accidents: classification of causes and case study. *Journal of Loss Prevention in the Process Industries*, 26(6), 1060-1070.
- Pittiglio, P., Bragatto, P., & Delle Site, C. (2014). Updated failure rates and risk management in process industries. *Energy procedia*, 45, 1364–1371.
- Rantala, A., Kortelainen, H., Ahonen, T. (2022). Turnaround Maintenance in Process Industry: Challenges and Potential Solutions. In: Pinto, J.O.P., Kimpara, M.L.M., Reis, R.R., Seecharan, T., Upadhyaya, B.R., Amadi-Echendu, J. (eds) 15th WCEAM Proceedings. WCEAM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-96794-9_18</u>
- Rajagopalan, S., Sahinidis, N. V., Amaran, S., Agarwal, A., Bury, S. J., Sharda, B., & Wassick, J. M. (2017). Risk analysis of turnaround reschedule planning in integrated chemical sites. *Computers & Chemical Engineering*, 107, 381-394.
- Raoufi, M., & Fayek, A. R. (2014). Process improvement for power plant turnaround planning and management. Architecture, Engineering and Construction, 168.
- Ratnayake, R. C., & Antosz, K. (2017). Development of a risk matrix and extending the risk-based maintenance analysis with fuzzy logic. *Procedia Engineering*, 182, 602-610.
- Shou, W., Wang, J., Wu, P., & Wang, X. (2019). Value adding and non-value adding activities in turnaround maintenance process: classification, validation, and benefits. Production Planning & Control, 31(1), 60–77. <u>https://doi.org/10.1080/09537287.2019.1629038</u>
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. *British Journal of Management*, 14(3), 207–222. <u>https://doi.org/10.1111/1467-8551.00375</u>
- Velmurugan, R.S. and Dhingra, T. (2015), "Maintenance strategy selection and its impact in maintenance function: A conceptual

framework", International Journal of Operations & Production Management, Vol. 35 No. 12, pp. 1622-1661.

- <u>https://doi.org/10.1108/IJOPM-01-2014-0028</u>.
 Yunusa-Kaltungo, A., & Labib, A. (2020). A hybrid of industrial maintenance decision making grids. *Production Planning & Control, 32*(5), 397-414. https://doi.org/10.1080/09537287.2020.1741046
 Zhu, S., van Jaarsveld, W., & Dekker, R. (2022). Critical project planning and spare parts inventory management in shutdown maintenance. *Reliability Engineering & System Safety, 219*, 108197.