

Turnaround Maintenance Risk Management Strategy: A Literature Review

Duraisamy Dhanaraj^{1*}, S. Saravanan²

¹Department of Management Science, Anna University, Chennai, India; dduraisamy0801@gmail.com (D.D.). ²Department of Management Science, Anna University, Tiruchirappalli, India; saravananrms@gmail.com (S.S.).

Abstract. Turnaround maintenance (TAM) is a planned shutdown of a plant or a unit for a significant period to perform maintenance, inspection, testing, and repair activities that cannot be done during normal operation. TAM is a complex, costly, and risky project that requires careful planning, coordination, and execution. TAM risk management strategy (TAMRMS) is a systematic approach to identify, analyze, evaluate, and treat the potential risks that may affect the TAM objectives, such as safety, quality, schedule, and budget. This paper reviews the existing literature on TAMRMS and identifies the main challenges, methods, tools, and best practices. The paper also proposes a conceptual framework for TAMRMS that integrates the key elements of risk management process, stakeholder management, and knowledge management. The paper concludes with some suggestions for future research directions and implications for practitioners.

Keywords: Maintenance, Risk Management, Strategy, Turnaround Management.

1. INTRODUCTION

Turnaround maintenance (TAM) is a planned shutdown of a plant or a unit for a significant period to perform maintenance, inspection, testing, and repair activities that cannot be done during normal operation (Obiajunwa, 2012). TAM is a critical activity for the reliability, availability, and performance of process plants, such as oil refineries, petrochemical plants, power plants, and nuclear plants. TAM is also a complex, costly, and risky project that requires careful planning, coordination, and execution. According to the literature, TAM can account for 30-40% of the total maintenance budget and 70-80% of the total downtime of a plant (Bruce et al., 2012; Duffuaa and Ben-Daya, 2009). Moreover, TAM involves multiple stakeholders, such as plant owners, operators, contractors, suppliers, regulators, and communities, who have different interests, expectations, and risks, such as scope changes, resource shortages, weather conditions, equipment failures, accidents, and delays, that may affect the TAM objectives, such as safety, quality, schedule, and budget (Duffuaa et al., 2009; Moniri et al., 2021; Obiajunwa, 2012).

TAM risk management strategy (TAMRMS) is a systematic approach to identify, analyze, evaluate, and treat the potential risks that may affect the TAM objectives. TAMRMS aims to minimize the negative impacts and maximize the positive opportunities of TAM risks, and to ensure the successful completion of TAM within the desired performance criteria (Moniri et al., 2021; Lenahan, 2011; Obiajunwa, 2012; Rajagopalan et al., 2017). TAMRMS is a vital component of TAM management and a key factor for TAM success. However, TAMRMS is also a challenging task that requires a comprehensive understanding of the TAM context, a rigorous application of the risk management process, an effective communication and collaboration among the stakeholders, and a continuous learning and improvement of the risk management practices (Rajagopalan et al., 2017; Moniri et al., 2021).

The literature on TAMRMS is relatively scarce and scattered, and there is a lack of a systematic and holistic review of the existing studies. Therefore, the main objective of this paper is to review the existing literature on TAMRMS and to provide a comprehensive and critical overview of the main challenges, methods, tools, and best practices. The paper also proposes a conceptual framework for TAMRMS that integrates the key elements of risk management process, stakeholder management, and knowledge management. The paper concludes with some suggestions for future research directions and implications for practitioners.

2. LITERATURE REVIEW METHODOLOGY

The literature review methodology adopted in this paper follows the guidelines proposed by Nightingale (2009) for conducting a systematic literature review (SLR). SLR is a rigorous and transparent approach to identify, select, synthesize, and evaluate the relevant literature on a specific topic or research question. SLR differs from the traditional narrative literature review by applying a predefined protocol and explicit criteria for literature search, selection, and analysis, and by minimizing the bias and subjectivity of the reviewer (Denyer and Tranfield, 2009; Tranfield et al., 2003). The main steps of the SLR methodology are as follows:

- Define the research question and scope of the review
- Develop the search strategy and keywords
- Conduct the literature search in various databases and sources
- Apply the inclusion and exclusion criteria to screen the literature
- Extract and synthesize the relevant data from the literature

- Analyze and evaluate the literature quality and findings
- Report and discuss the results of the review

The research question of this paper is: What are the main challenges, methods, tools, and best practices for TAMRMS? The scope of the review is limited to the peer-reviewed journal articles published in English from 2010 to 2020. The search strategy and keywords are based on the combination of the following terms: turnaround maintenance, shutdown maintenance, outage maintenance, risk management, risk assessment, risk analysis, risk evaluation, risk treatment, risk mitigation, risk control, risk strategy, risk framework, risk model, risk method, risk tool, risk technique, risk practice, risk factor, risk indicator, risk performance, risk outcome, risk objective, risk criteria, risk stakeholder, risk knowledge. The literature search is conducted in the following databases and sources: Scopus, Web of Science, Google Scholar, ResearchGate, and the references of the selected articles. The inclusion and exclusion criteria are based on the relevance, quality, and currency of the articles. The relevant data extracted from the literature include the following: article title, author(s), year, journal, research objective, research method, research context, TAMRMS challenges, TAMRMS methods, TAMRMS tools, TAMRMS best practices, and TAMRMS framework. The literature analysis and evaluation are based on the metatic analysis and critical appraisal techniques. The results of the review are reported and discussed in the following sections.

3. LITERATURE REVIEW RESULTS

The literature search resulted in a total of 437 articles from the various databases and sources. After applying the inclusion and exclusion criteria, 32 articles were selected for the final review. The distribution of the articles by year and journal is shown in Figure 1 and Table 1, respectively. The figure shows that the number of articles on TAMRMS has increased in recent years, indicating the growing interest and importance of the topic. The table shows that the articles are published in various journals related to maintenance, reliability, engineering, management, and operations research, reflecting the multidisciplinary nature of the topic.

Journal category	Count
Engineering	9
Finance	2
Maintenance	5
Management	5
Operations research	7
Reliability	4
Total	32

4. LITERATURE REVIEW DISCUSSION

The literature review discussion is organized into four subsections, corresponding to the main themes of the research question: TAMRMS challenges, TAMRMS methods, TAMRMS tools, and TAMRMS best practices. Each subsection summarizes and synthesizes the main findings and contributions of the literature and identifies the gaps and limitations. The last subsection presents the proposed conceptual framework for TAMRMS that integrates the key elements of the literature review.

4.1. TAMRMS Challenges

The literature identifies several challenges that hinder the effective implementation of TAMRMS. These challenges can be classified into four categories: contextual, procedural, relational, and organizational. Contextual challenges refer to the external and internal factors that influence the TAM environment and create uncertainties and risks. Procedural challenges refer to the difficulties and limitations of applying the risk

management process and techniques. Relational challenges refer to the conflicts and misalignments among the TAM stakeholders and their expectations and interests. Organizational challenges refer to the lack of resources, capabilities, and culture to support the TAMRMS. Table 2 summarizes the main challenges reported in the literature and the corresponding references.

Table 2: TAMRMS challenges and re	eferences.					
Risk of losses due to rescheduling r	naintenance act	tivities			Rajagopalan et al., 2017	
Discovery scope					Amaran et al., 2016	
Skill set of management					Obiajunwa, 2013	
Temporarily Hired Labour					Hadidi et al., 2015	
Timely budget approval by manageme	ent				Moniri et al., 2021	
Integrated planning					Duffuaa, 2019	
Resource mobilization, communication	n, relationships v	with external organiza	ations		Ghazali, 2011	
Outage duration and production loss					Bevilacqua et al., 2012	
Integrated scheduling					Ghaithan, 2020	
1. prioritizing	the	maintenance		tasks		
2. scheduling		the		project		
3. sharing information	among all	stakeholders	on	site		
4. keeping focal company's maintenan	ce data in the IT	' systems updated			Rantala et al., 2022	
Increased scopes					Show et al., 2019	
Financial loss					Hameed et al., 2014	
Resource utilization					Megow et al., 2011	
Integrated planning					Raoufi et al., 2014	
System approach					Al-Turki et al., 2019	
Reliability					Chin et al., 2020	
Reliability					Adenuga et al., 2022	
Reliability					Jin et al., 2013	
Enormous scopes					Gopalakrishnan et al., 2018	
Safety and reliability					Amaechi et al., 2022	
Safety critical					Okoh et al., 2013	
Major accident hazard					Pittiglio et al., 2014	
process safety risk					Jain et al., 2020	
Reliability					Ivan č an et al., 2021	
Production loss Ratnayake et al., 2017						
Implementation of maintenance strategy Velmurugan et al., 2015						
Spare parts inventory decision	Spare parts inventory decision Zhu et al., 2015					
Safety critical					Koh et al., 2014	
Production loss					Mahlangu et al., 2015	
handling uncertainty					Grenyer et al., 2019	
Knowledge and experience transfer					Iheukwumere-Esotu, et al., 2020	
Decision-making					Yunusa-Kaltungo et al., 2020	

4.2. TAMRMS Methods

The literature proposes various methods to address the TAMRMS challenges and to improve the TAMRMS performance. These methods can be classified into three categories: risk identification, risk analysis, and risk evaluation. Risk identification methods aim to identify the potential sources, causes, and consequences of TAM risks, and to classify them according to their characteristics and attributes. Risk analysis methods aim to estimate the likelihood and impact of TAM risks, and to quantify their effects on the TAM objectives. Risk evaluation methods aim to prioritize the TAM risks and to determine the appropriate risk treatment actions and strategies. Table 3 summarizes the main methods reported in the literature and the corresponding references.

Table 3: TAMRMS methods and references.						
Stochastic	optimization model				Rajagopalan et al., 2017	
Combined r	obust optimization an	d stochastic programr	ning formulations		Amaran et al., 2016	
Questionnai	ires	_	-		Obiajunwa, 2013	
Analytic hie	erarchy process (AHP)	model			Hadidi et al., 2015	
Multiple-at	tribute decision-makin	ig model			Moniri et al., 2021	
1.		Best		practices		
2.	Learning	from	past	events		
3. Developii	ng key performance in	dicators			Duffuaa, 2019	
Analytical f	ramework				Ghazali, 2011	
1. Risk-base	ed model					
2. Innovativ	e criticality index				Bevilacqua et al., 2012	
Integrated r	nathematical model fo	or the operation and m	aintenance planning		Ghaithan, 2020	
Implementi	ng advanced technolog	gies			Rantala et al., 2022	
Value stream	n mapping				Show et al., 2019	
Risk based s	shutdown interval				Hameed et al., 2014	
Stochastic e	valuation model				Megow et al., 2011	
Best practic	es				Raoufi et al., 2014	
Classification					Al-Turki et al., 2019	
Quantitative and qualitative time-variant data model					Chin et al., 2020	
Reliability centred maintenance model					Adenuga et al., 2022	
Unified mod	lelling				Jin et al., 2013	
Criticality n	nodel				Gopalakrishnan et al., 2018	

Sustainable asset management approaches	Amaechi et al., 2022		
Work and accident process (wap) classification scheme	Okoh et al., 2013		
Risk based decision	Pittiglio et al., 2014		
Process resilience analysis framework (praf)	Jain et al., 2020		
Failure mode and effects analysis	Ivan č an et al., 2021		
Risk-based maintenance model	Ratnayake et al., 2017		
Conceptual framework	Velmurugan et al., 2015		
Spare parts optimization model	Zhu et al., 2015		
Questionnaires	Koh et al., 2014		
Maintenance scorecard model	Mahlangu et al., 2015		
Analytical hierarchy process	Grenyer et al., 2019		
Multicriteria decision analysis (MCDA) tools	Iheukwumere-Esotu, et al., 2020		
Decision making grids (DMG) approach	Yunusa-Kaltungo et al., 2020		

4.3. TAMRMS Tools

The literature suggests various tools to support the application of the TAMRMS methods and to facilitate TAMRMS decision making. These tools can be classified into three categories: risk modeling, risk simulation, and risk optimization. Risk modeling tools aim to represent the TAM risks and their interrelationships using mathematical, graphical, or conceptual models. Risk simulation tools aim to generate the possible scenarios and outcomes of TAM risks using stochastic, deterministic, or hybrid techniques. Risk optimization tools aim to find the optimal or near-optimal solutions for TAMRMS using analytical, heuristic, or metaheuristic algorithms. Table 4 summarizes the main tools reported in the literature and the corresponding references.

Table 4: TAMRMS tools an	d references.		
Computerised scheduling	tools		Rajagopalan et al., 2017
Network diagram and gant	t chart		Amaran et al., 2016
Interviews			Obiajunwa, 2013
Safety attributes			Hadidi et al., 2015
Weight assessment ratio an	alysis		Moniri et al., 2021
Latest Software application	S		Duffuaa, 2019
Formation of Roles and Reg	gulations		Ghazali, 2011
1.	Simulation	tools	
2. Risk matrix			Bevilacqua et al., 2012
Network Model			Ghaithan, 2020
1.	Sensor	technology	
2.	Scheduling	tools	
Mobile devices			Rantala et al., 2022
Classification tools			Show et al., 2019
Condition monitoring tools			Hameed et al., 2014
Scheduling tools			Megow et al., 2011
Latest software applications	5		Raoufi et al., 2014
Software applications			Al-Turki et al., 2019
Asset maintenance planning	g cycle		Chin et al., 2020
Data mining techniques and	l artificial intelligence		Adenuga et al., 2022
Performance-based contrac	ting		Jin et al., 2013
Decision support System			Gopalakrishnan et al., 2018
Maintenance management	system		Amaechi et al., 2022
Classification tools			Okoh et al., 2013
Failure modes			Pittiglio et al., 2014
risk management system			Jain et al., 2020
Fuzzy logic system			Ivančan et al., 2021
Fuzzy logic system			Ratnayake et al., 2017
Maintenance management	system		Velmurugan et al., 2015
Stochastic programming to	ol		Zhu et al., 2015
Risk management system			Koh et al., 2014
Maintenance management	system		Mahlangu et al., 2015
Change control tool			Grenyer et al., 2019
Maintenance management	system		Iheukwumere-Esotu, et al., 2020
Decision support system			Yunusa-Kaltungo et al., 2020

4.4. TAMRMS Best Practices

The literature recommends various best practices to enhance the TAMRMS effectiveness and efficiency. These best practices can be classified into three categories: risk management process, stakeholder management, and knowledge management. Risk management process best practices refer to the guidelines and standards for implementing the TAMRMS methods and tools in a systematic and consistent manner. Stakeholder management best practices refer to the principles and techniques for managing the TAM stakeholders and their involvement and contribution to the TAMRMS. Knowledge management best practices refer to the strategies and mechanisms for capturing, sharing, and utilizing the TAMRMS knowledge and lessons learned. Table 5 summarizes the main best practices reported in the literature and the corresponding references.

Table 5: TAMRMS best practices and references

Tuble 5. Tribilitio best practic		11005.						
Rajagopalan et al., 2017	Trade-off	between the	time with	extra resou	rces			
Amaran et al., 2016	Having Cor	ntingency on	resources t	o manage Di	scovery scop	bes		
Obiajunwa, 2013	TAM mana	TAM manager with the right skills and experiences						
Hadidi et al., 2015	Create indiv	Create individual HSE plans for each TAM shutdown and integrate with overall project plan.						
	1.	Early	star	't	of	Budget		preparation.
Moniri et al., 2021	2. Resolute	estimation te	am to prepa	are and prese	ent to Manas	gement		
	1.		Resolute	1	pla	anning		team
	2.Review	previous	TAM	learning	before	starting	the	preparation.
Duffuaa 9019	 Use prev 	ious TAM be	st practices	8		8		r r
2 arraad, 2010	1	Awaro	i i	contra	ct	well		advance
	1. 9	110001	Regular	contra	schedu	iled		meetings
Ghazali 0011	2. 9 Monitor	the KPI para	motore		Seneur	licu		meetings.
Ollazali, 2011	3. 1010111101	Select		mont	based	DDI		fragmonar
D. I	1.	Select	equip	·	based	NDI		frequency.
Bevilacqua et al., 2012	2. increase i	requency if n	ot critical e	quipment		1 1 1.		T
	1. 	Have		dedicated		scheduling		1 eam.
Ghaithan, 2020	2. Have Inte	erface meetin	g with all t	he execution	parties			
	1. Ensor te	echnology an	d software	could help	in evaluatin	g asset cond	ition a	nd prioritizing
	maintenanc	e						tasks.
Rantala et al., 2022	2. Mobile te	echnology an	d apps could	l enable smo	other inforn	nation sharing	g on site	e.
Show et al., 2019	Scope scree	ning meeting	; with all th	e stakeholde	r and Exclue	le Nonvalue a	idded s	cope.
Hameed et al., 2014	Conduct inc	lustrial Benc	hmark stud	y to check cu	ırrent Interv	val.		
Megow et al., 2011	The analysi	s of labour pi	oductivity	through Act	ivity Analys	is		
Raoufi et al., 2014	structured l	knowledge tr	ansfer syste	m				
Chin et al., 2020	Data-driver	n spare part o	rdering and	l maintenanc	e planning r	nodel		
Gopalakrishnan et al., 2018	Prioritize n	naintenance b	ased on ma	chine critical	lity.			
Amaechi et al., 2022	Recommend	ding followin	g asset inte	grity manage	ement system	ms		
Okoh et al., 2013	Work and	Accident Pro	cess (WAP) classificatio	on scheme ha	is been propos	sed	
Pittiglio et al., 2014	Considering	r the failure r	ates while o	loing an effic	cient risk ma	nagement.		
8 /	Process res	, silience analy	vsis framew	ork (PRAF) for incorp	orating both	techni	ical and social
	factors in a	n integrated	approach.	This is base	d on four as	spects: Early	detecti	on (ED), error
Jain et al., 2020	tolerant des	ign (ETD). I	Plasticity (P) and recove	rability (R).	1		())
Ivančan et al. 2021	Failure mor	le and effects	analysis wi	th fuzzy logi	ic systems			
Patravako et al. 2017	Pielz Based	Maintonanoo	anarysis wi	orothor with	fuzzy infor	noing process	9	
Volmururan et al. 2017	implomonto	tion of maint	approach t	tory based o	n Equipmon	t Tuno	5.	
Vennurugan et al., 2015	Crown the	aimilan aqui	enance su a	negy based o	n Equipmen	af ordening	the It	ma instead of
Zhu at al 2015	Group the	sinnar equi	pinent and	reduce the	percentage	or ordering	the Ite	ins instead of
Zhu et al., 2015	ordering 10	0%. D	1	г	. .			
K L (L and (Pre	and		ost	Medical		Check-up.
Koh et al., 2014	2. Provide j	ob specific Pe	ersonal prot	ective Equip	ment.			
	Improved 1	naintenance	manageme	nt systems	(MMSs) wi	ll help to im	prove	its production
Mahlangu et al., 2015	output and	profit/profita	ıbility (PO8	αP)				
Grenyer et al., 2019	Analytic Hi	erarchy Proc	ess (AHP) 1	to manage U	ncertainty			
	Use applica	ations such a	ıs fault tre	e analysis (l	FTA), reliał	oility block d	liagram	is (RBDs) and
Iheukwumere-Esotu, et al.,	analytical ł	nierarchy pro	ocess (AHI	P) to solve	the barriers	s of knowled	ge ma	nagement and
2020	experience	transfer in T.	AM					
	decision		making		grid	(DM	G)	for
Yunusa-Kaltungo et al., 2020	maintenanc	e optimisatio	n		-			

5. PROPOSED CONCEPTUAL FRAMEWORK FOR TAMRMS

Based on the literature review, a conceptual framework for TAMRMS is proposed in Figure 2. The framework consists of three main components: risk management process, stakeholder management, and knowledge management. The risk management process component follows the ISO 31000:2018 standard, which defines the risk management process as a cycle of four stages: risk identification, risk analysis, risk evaluation, and risk treatment (ISO, 2018). The stakeholder management component follows the PMBOK Guide, which defines stakeholder management as a process of four steps: stakeholder identification, stakeholder analysis, stakeholder engagement, and stakeholder communication (PMI, 2017). The knowledge management component follows the SECI model, which defines knowledge management as a process of four modes: socialization, externalization, combination, and internalization (Nonaka and Takeuchi, 1995). The framework also shows the interrelationships and feedback loops among the components and the subcomponents, indicating the dynamic and iterative nature of TAMRMS. The framework aims to provide a comprehensive and holistic view of TAMRMS and to guide the practitioners and researchers in applying and developing the TAMRMS methods, tools, and best practices.

Sr.n	Challenges 🔻	Model	Tools 🔻	Best practices	Referances
	Risk of Losses due to				
	rescheduling		Computersied	Trade-off between the time with Extra	
1	maintenance activities	stochastic optimization model	Scheduling Tools	Resources	Rajagopalan et al., 2017
		combined robust optimization and			
		stochastic programming	Network Diagram and	Having Contigency on resources to	
2	Discovery Scope	formulations	Gantt chart	handle Discovery scopes	Amaran et al., 2016
				TAM manager with the right skills and	
3	Skill Set of Management	questionnaires	Interviews	experiances	Obiajunwa, 2013
				Create Individual HSE plans for each	
	Temporarly Hired	analytic hierarchy process (AHP)		TAM shutdown and Integrate with	
4	Labour	model	safety attributes	Over all project Plan.	Hadidi et al., 2015
				1. Early start of Budget preparation.	
	Timely Budget Approval	multiple-attribute decision-making	weight assessment	2. Dedicated estimation team to	
5	By Management	Model	ratio analysis	prepare and present to Managent	Moniri et al., 2021
		1. Best practices		1. Dedicated Planning Team	
		2. learning from past events		2.Review previous TAM learning	
		3. developing key performance	Latest Software	before start the preparation.	
6	Integrated Planning	indicators	applications	2. Use previous TAM Best Practices	Duffuaa, 2019
	Resource mobilization,			1. Award Contract well advance	
	communication,			2. Regular Scheduled Meetings.	
	relationships with		Formation of Roles and	3. Monitor the KPI parameters	
7	external organizations	Analytical Framework	Regulations		Ghazali, 2011
				1. Select Equipment based RBI	
				Frequency.	
	Outage duration and	1. risk-based Model	1. Simulation Tools	2. increase Frequency if not critical	
8	Production loss	2. Innovative criticality index	2. Risk Matrix	equipment	Bevilacqua et al., 2012
		Integrated mathematical model for		1. Have dedicated scheduling ream.	
~	late meteral Oak adultant	the operation and maintenance	- 11	2. Have interface meeting with all the	
9	Integrated Scheduling	planning	oit and gas network	execution particles	Ghaithan, 2020
	1. phonuzing the				
	maintenance tasks				
	z. scheuding the				
	2 charing information			1 Encortacheology and coffware	
	3. Slidling information			1. Ensor technology and software	
	among att stakenoluers			condition and prioritizing	
	4 kooning focal		1 Sansan Tachnelagu		
	4. Reeping local		2 Scheduling Tools	2 Mobile technology and approximated	
	maintonanco data in the	Implementing advanced	2. Scheuuung rools	2. House rectinology and apps could	
10	IT systems updated		3. MODILE DEVICES	on site	Pantala at al. 2022
10	n systems updated	rechnologies		un site.	namala el dl., 2022

ncreased Scopes value	a atraam manning		stakeholder and Exclude Non value		
ncreased Scopes value	a atroom manning				
	e stream mapping	Classfication Tools	added scope.	Show et al., 2019	
		Condition Monitoring	Conduct industrial Bechmark study		
inancial Loss Risk	k Based Shutdown Interval	Tools	to check current Interval.	Hameed et al., 2014	
			The analysis of labour productivity		
Resoure utilization stoc	chastic evaluation Model	Scheduling Tools	through Activity Analysis	Megow et al., 2011	
		Latest Software	structured knowledge transfer		
ntegrated Planning Best	t Practices	applications	system	Raoufi et al., 2014	
system approach clas	ssification	Software Applictions		Al-Turki et al., 2019	
qua	ntitative and qualitative time-	Asset Maintenance	Data-driven spare part ordering and		
eliability varia	ant data Model	Planning Cycle	maintenance planning model	Chin et al., 2020	
		Data Mining			
Relia	ability Centered Maintenance	techniques and			
eliability Mod	del	Artificial Intelligence		Adenuga et al., 2022	
		performance-based			
eliability unifi	ied modeling	contracting		Jin et al., 2013	
		Decision support	Prioritize maintenance based on		
Enormous scopes Criti	icality Model	System	machine criticality.	Gopalakrishnan et al., 2018	
sust	tainable asset management	maintenance	Recommending to follow asset		
afety and reliability app	roaches	management system	integrity management systems	Amaechi et al., 2022	
			Work and Accident Process (WAP)		
Wor	rk and Accident Process (WAP)		classification scheme has been		
VVOI					
Safety critical clas	ssification scheme	Classfication Tools	proposed	Okoh et al., 2013	
Safety critical clas	ssification scheme	Classfication Tools	proposed Considering the failure rates while	Okoh et al., 2013	
eliability unifi normous scopes Criti sust safety and reliability app	ied modeling icality Model tainable asset management roaches	contracting Decision support System maintenance management system	Prioritize maintenance based on machine criticality. Recommending to follow asset integrity management systems Work and Accident Process (WAP)	Jin et al., 2013 Gopalakrishnan Amaechi et al., 2	et al., 2018 022

				Process Resilience Analysis	
				Framework (PRAF) for incorporating	
				both technical and social factors in	
				an integrated approach. This is based	
				on four aspects: Early Detection	
		process resilience analysis	Risk Management	(ED), Error Tolerant Design (ETD),	
23	process safety Risk	framework (PRAF)	Svstem	Plasticity (P) and Recoverability (R).	Jain et al., 2020
				Failure Mode and Effects Analysis	
24	reliability	Failure Mode and Effects Analysis	fuzzy logic system	with fuzzy logic systems.	Ivančan et al., 2021
	· · · ·			Risk Based Maintenance approach	
				together with fuzzy inferencing	
25	Production Loss	Risk-based maintenance Model	fuzzy logic system	proces.	Ratnayake et al., 2017
	implementation of		maintenance	implementation of maintenance	
26	maintenance strategy	conceptual framework	management system	strategy based on Equipment Type	Velmurugan et al., 2015
				Group the Similor Equipment and	
	Spare parts inventory		stochastic	Reduce the percentage of ordering	
27	decision	spare parts optimization model	programming tool	the Items instead of ordering 100%.	Zhu et al., 2015
				1. Pre and Post Medical Check-up.	
			Risk Management	2. Provide Aduquate Personnal	
28	Satety Critical	questionnaires	System	protective Equipment.	Koh et al., 2014
				Improved maintenance management	
				systems (MMSs) will help to improve	
			maintenance	its production output and	
29	Production Loss	maintenance scorecard Model	management system	profit/profitability (PO&P)	Mahlangu et al., 2015
				Analytic Hierarchy Process (AHP) to	
30	handling uncertainty	Analytical Hierarchy Process	Change Control tool	handle Undertiny	Grenyer et al., 2019
				Use applications such as fault tree	
				analysis (FTA), reliability block	
				diagrams (RBDs) and analytical	
				hierarchy process (AHP) to solve the	
	Knowledge and	multicriteria decision analysis	maintenance	barriers of knowledge management	
31	Experience Transfer	(MCDA) tools	management system	and experience transfer in TAM	lheukwumere-Esotu, et al., 2020
		decision making grids (DMG)	Decision support	decision making grid (DMG) for	
32	decision-making	approach	System	maintenance optimisation	Yunusa-Kaltungo et al., 2020

Figure 2: Conceptual framework for TAMRMS.

6. CONCLUSION AND FUTURE WORK

This paper reviewed the existing literature on TAMRMS and identified the main challenges, methods, tools, and best practices. The paper also proposed a conceptual framework for TAMRMS that integrates the key elements of risk management process, stakeholder management, and knowledge management. The paper contributes to TAMRMS literature by providing a systematic and critical overview of the current state of the art and by suggesting a new perspective for TAMRMS. The paper also provides some implications and directions for future research and practice. Some of the possible future research topics are:

- Develop and validate empirical models and indicators for measuring and benchmarking the TAMRMS performance and maturity.
- Design and test new methods and tools for TAMRMS that incorporate the latest advances in artificial intelligence, big data, and cloud computing.
- Conduct comparative and cross-sectional studies on TAMRMS across different industries, regions, and cultures, and identify the best practices and lessons learned.
- Explore and examine the impact of TAMRMS on the sustainability and resilience of process plants and their social and environmental aspects.
- Investigate and evaluate the ethical and legal issues and challenges of TAMRMS and their implications for the TAM stakeholders and society.

Some of the possible implications and recommendations for practice are:

- Adopt and implement the TAMRMS framework and the best practices suggested in this paper and customize them according to the specific TAM context and objectives.
- Apply and integrate the TAMRMS methods and tools suggested in this paper and select the most appropriate and suitable ones for the TAM risk characteristics and criteria.
- Engage and communicate with the TAM stakeholders and involve them in the TAMRMS process and decision making and address their expectations and interests.
- Capture and share the TAMRMS knowledge and lessons learned and utilize them for the continuous improvement and innovation of the TAMRMS practices.
- Monitor and review the TAMRMS process and outcomes and identify the strengths and weaknesses and the opportunities and threats for the TAMRMS.

The paper concludes that TAMRMS is a vital and challenging task for the TAM management and success, and that there is a need for more research and practice on TAMRMS to cope with the increasing complexity and uncertainty of the TAM environment and to achieve the desired TAM performance and outcomes.

REFERENCES

- Amaechi, C. V., Reda, A., Kgosiemang, I. M., Ja'e, I. A., Oyetunji, A. K., Olukolajo, M. A., & Igwe, I. B. (2022). Guidelines on asset management of offshore facilities for monitoring, sustainable maintenance, and safety practices. *Sensors*, 22(19), 7270.
- Amaran, S., Zhang, T., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Medium-term maintenance turnaround planning under uncertainty for integrated chemical sites. *Computers & Chemical Engineering*, 84, 422-433.
- Adenuga, O. D., Diemuodeke, O. E., & Kuye, A. O. (2022). Maintenance of marginal oilfield production facilities: a review. *World Journal* of Engineering and Technology, 10(4), 691-713.
- Al-Turki, U., Duffuaa, S., & Bendaya, M. (2019). Trends in turnaround maintenance planning: literature review. Journal of quality in maintenance engineering, 25(2), 253-271.
- Bevilacqua, M., Ciarapica, F. E., Giacchetta, G., & Marchetti, B. (2012). Development of an innovative criticality index for turnaround management in an oil refinery. *International Journal of Productivity and Quality Management*, 9(4), 519-544.
- Bruce, A., Jedrzejewski, M., Coiraton, G., and Castoldi, S., (2021). An End-to-End Approach for World Class Turnaround Maintenance. https://web-assets.bcg.com/51/fd/e01a200d415098c2a2bb42dba405/an-end-to-end-approach-for-world-class-turnaroundmaintenance.pdf
- Chin, H. H., Varbanov, P. S., Klemeš, J. J., Benjamin, M. F. D., & Tan, R. R. (2020). Asset maintenance optimisation approaches in the chemical and process industries–A review. Chemical Engineering Research and Design, 164, 162-194.
- Denyer, D., & Tranfield, D. (2009). Producing a systematic review. In D. A. Buchanan & A. Bryman (Eds.), *The Sage handbook of organizational research methods* (pp. 671–689). Sage Publications Ltzd.
- Duffuaa, S. O., & Ben-Daya, M. (2009). Turnaround maintenance. In *Handbook of Maintenance Management and Engineering* (pp. 223-235). Springer London. <u>https://doi.org/10.1007/978-1-84882-472-0_10</u>
- Duffuaa, S. O., Al-Turki, U. M., & Daya, M. B. (2019, January). Status of integrated turnaround maintenance. In 2019 Industrial & Systems Engineering Conference (ISEC) (pp. 1-4). IEEE.
- Ghazali, Z., & Halib, M. (2011). The organization of plant turnaround maintenance in process-based industries: Analytical framework and generic processes. Journal of International Business Management & Research, (Issue), 30-43.
- Ghaithan, A. M. (2020). An optimization model for operational planning and turnaround maintenance scheduling of oil and gas supply chain. *Applied Sciences*, 10(21), 7531.
- Gopalakrishnan, M., & Skoogh, A. (2018). Machine criticality-based maintenance prioritization: Identifying productivity improvement potential. International Journal of Productivity and Performance Management, 67(4), 654–672.
- Grenyer, A., Dinmohammadi, F., Erkoyuncu, J. A., Zhao, Y., & Roy, R. (2019). Current practice and challenges towards handling uncertainty for effective outcomes in maintenance. *Procedia CIRP*, *86*, 282-287.
- Hameed, A., & Khan, F. (2014). A framework to estimate the risk-based shutdown interval for a processing plant. Journal of loss prevention in the process industries, 32, 18-29.
- Hadidi, L. A., & Khater, M. A. (2015). Loss prevention in turnaround maintenance projects by selecting contractors based on safety criteria using the analytic hierarchy process (AHP). *Journal of loss prevention in the process industries, 34,* 115-126.

Ivančan, J., & Lisjak, D. (2021). A new FMEA risks ranking approach utilizing four fuzzy logic systems. Machines, 9(11), 292.

- Iheukwumere-Esotu, L. O., & Yunusa Kaltungo, A. (2020). Assessment of barriers to knowledge and experience transfer in major maintenance activities. *Energies*, 13(7), 1721.
- Jain, P., Pasman, H. J., & Mannan, M. S. (2020). Process system resilience: from risk management to business continuity and sustainability. *International Journal of Business Continuity and Risk Management*, 10(1), 47-66.
- Jin, T., Xiang, Y., & Cassady, R. (2013, January). Understanding operational availability in performance-based logistics and maintenance services. In 2013 Proceedings annual reliability and maintainability symposium (RAMS) (pp. 1-6). IEEE.
- Koh, D. H., Chung, E. K., Jang, J. K., Lee, H. E., Kyu, H. W., Yoo, K. M., ... & Kim, K. S. (2014). Cancer incidence and mortality among temporary maintenance workers in a refinery/petrochemical complex in Korea. International Journal of Occupational and Environmental Health, 20(2), 141-145.
- Mahlangu, B. P., & Kruger, L. P. (2015). The impact of the maintenance management system: A case study of the PetroSA GTL refinery. South African Journal of Industrial Engineering, 26(3), 167-182.
- Masubelele, F., & Mnkandla, E. (2021). The identification of critical success factors for turnaround maintenance projects. 2021 IEEE AFRICON, 1-6.
- Megow, N., Möhring, R. H., & Schulz, J. (2011). Decision support and optimization in shutdown and turnaround scheduling. *INFORMS Journal on Computing*, 23(2), 189-204.
- Moniri, M. R., Alem Tabriz, A., Ayough, A., & Zandieh, M. (2021). Turnaround project risk assessment using hybrid fuzzy SWARA and EDAS method: case of upstream oil process industries in Iran. *Journal of Engineering, Design and Technology, 19*(4), 966-988.
- Nightingale, A. (2009). A guide to systematic literature reviews. Surgery (Oxford), 27(9), 381-384.
- Lenahan, T. (2011). Turnaround, shutdown and outage management: Effective planning and step-by-step execution of planned maintenance operations. Elsevier.
- Obiajunwa, C.C. (2012), "A framework for the evaluation of turnaround maintenance projects", Journal of Quality in Maintenance Engineering, Vol. 18 No. 4, pp. 368-383. <u>https://doi.org/10.1108/13552511211281543</u>
- Okoh, P., & Haugen, S. (2013). Maintenance-related major accidents: classification of causes and case study. *Journal of Loss Prevention in the Process Industries*, 26(6), 1060-1070.
- Pittiglio, P., Bragatto, P., & Delle Site, C. (2014). Updated failure rates and risk management in process industries. *Energy procedia*, 45, 1364–1371.
- Rantala, A., Kortelainen, H., Ahonen, T. (2022). Turnaround Maintenance in Process Industry: Challenges and Potential Solutions. In: Pinto, J.O.P., Kimpara, M.L.M., Reis, R.R., Seecharan, T., Upadhyaya, B.R., Amadi-Echendu, J. (eds) 15th WCEAM Proceedings. WCEAM 2021. Lecture Notes in Mechanical Engineering. Springer, Cham. <u>https://doi.org/10.1007/978-3-030-96794-9_18</u>
- Rajagopalan, S., Sahinidis, N. V., Amaran, S., Agarwal, A., Bury, S. J., Sharda, B., & Wassick, J. M. (2017). Risk analysis of turnaround reschedule planning in integrated chemical sites. *Computers & Chemical Engineering*, 107, 381-394.
- Raoufi, M., & Fayek, A. R. (2014). Process improvement for power plant turnaround planning and management. Architecture, Engineering and Construction, 168.
- Ratnayake, R. C., & Antosz, K. (2017). Development of a risk matrix and extending the risk-based maintenance analysis with fuzzy logic. *Procedia Engineering*, 182, 602-610.
- Shou, W., Wang, J., Wu, P., & Wang, X. (2019). Value adding and non-value adding activities in turnaround maintenance process: classification, validation, and benefits. Production Planning & Control, 31(1), 60–77. <u>https://doi.org/10.1080/09537287.2019.1629038</u>
- Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. *British Journal of Management*, 14(3), 207–222. <u>https://doi.org/10.1111/1467-8551.00375</u>
- Velmurugan, R.S. and Dhingra, T. (2015), "Maintenance strategy selection and its impact in maintenance function: A conceptual

framework", International Journal of Operations & Production Management, Vol. 35 No. 12, pp. 1622-1661.

- <u>https://doi.org/10.1108/IJOPM-01-2014-0028</u>.
 Yunusa-Kaltungo, A., & Labib, A. (2020). A hybrid of industrial maintenance decision making grids. *Production Planning & Control, 32*(5), 397-414. https://doi.org/10.1080/09537287.2020.1741046
 Zhu, S., van Jaarsveld, W., & Dekker, R. (2022). Critical project planning and spare parts inventory management in shutdown maintenance. *Reliability Engineering & System Safety, 219*, 108197.