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Abstract. In this article, the conditions for the regular solution of the boundary problem for a class of second-order operator-differential 
equations with truncated coefficients are derived. These equations have been specifically constructed to mathematically determine the 
corrosion time of metals in aggressive environments, which has crucial implications in fields such as materials science and engineering. The 
study focuses on identifying the precise conditions under which the problem exhibits regular solvability, a key aspect of ensuring the 
reliability of the solutions in practical applications. Furthermore, the obtained conditions are explicitly expressed in terms of the operator 
coefficients of the equation, offering a more robust framework for understanding the solvability of such operator-differential equations in 
various contexts. These results contribute significantly to both the theoretical and applied aspects of mathematical physics and engineering, 
especially in the analysis of physical systems subject to corrosion and other environmental factors. 
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1. INTRODUCTION 
Many issues in mechanics, mathematical physics, and the theory of partial differential equations necessitate a 

comprehensive examination of the solvability of boundary value problems for operator-differential equations 
across various functional spaces [1-7]. These investigations are essential not only for theoretical understanding 
but also for practical applications in engineering, physics, and applied mathematics. 

For instance, certain challenges in the theory of elasticity within strips [8-10], along with problems 
concerning the vibrations of mechanical systems [9] and the oscillations of elastic cylinders [10], underscore the 
critical nature of studying specific boundary value problems associated with operator-differential equations. Such 
studies are foundational for advancing the spectral theory of quadratic beams and higher-order beams, which play 
a pivotal role in modern structural analysis and design. 

An illustrative example of this relationship is the analysis of the stress-strain state of a slab, which 
necessitates the resolution of problems related to the theory of elasticity in strips. This exploration not only 
enhances our theoretical frameworks but also informs practical design considerations in civil and mechanical 
engineering, where understanding material behavior under stress is paramount. The ability to predict how 
structures will respond to external forces is vital for ensuring safety and reliability in engineering projects. 

In addition, the quest for precise values of norms or their upper bounds for operators of intermediate 
derivatives presents significant mathematical interest. These investigations are critical for developing theoretical 
insights and practical methodologies in various fields of mathematical analysis [11,12]. For example, in 
approximation theory [13], understanding these norms facilitates the creation of better approximation schemes, 
which are vital for numerical analysis and computational methods. This can lead to more accurate simulations in 
engineering applications, improving design processes and outcomes. 

Moreover, the interplay between theoretical advances and practical applications highlights the importance of 
interdisciplinary research. The methodologies developed through studying operator-differential equations often 
find applications in diverse areas such as control theory, signal processing, and even financial mathematics. For 
instance, in control systems, understanding the dynamics of operator-differential equations can lead to more 
effective control strategies, optimizing system performance. Similarly, in financial mathematics, the techniques 
derived from these studies can be used to model complex financial instruments, providing better risk assessments 
and decision-making tools. 

Ultimately, the ongoing research in this area promises to deepen our understanding of both fundamental and 
applied problems, paving the way for new discoveries and advancements in science and engineering. The 
continuous exploration of these topics not only enriches the mathematical landscape but also drives innovation, 
opening new avenues for research and practical applications across multiple disciplines. 

 
2. SOME DEFINITION AND AUXILIARY FAKTS 

Let H  is a separable Hilbert space, A  positive definite self-adjoint operator in H  with domain ( )AD . Let 
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0 . Then, as is known, the domain of definition of the operator 
A  turns into a Hilbert space H  i.e. 

=H ( ) ( ) ( ) 




 HyxyAxAyxAD = ,,,,, . 

At 0=  believe that HH =0 , but ( ) ( )yxyx ,,
0
= . 

    Let a  and b  be real numbers such that − ba . We denote by ( )( )HbaL ;,2  the Hilbert space 

of all vector functions defined on an interval ( )ba ,  almost everywhere, with values in H , measurable and square 

integrable with the norm 

( )( )
( ) 
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2
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;,2
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Obviously, the scalar multiplication in ( )( )HbaL ;,2  is given by the formula 

( ) ( )( ) ( ) ( )( ) ( ) ( )=  tgtftdtgtfgf

b
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,,,,
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Assumme −=a , −=b , i.e. ( ) R=−  believe that ( )( ) =HbaL ;,2 ( )( )HL ;,2 − ( )HRL ;2= , 

but 0=a , −=b , i.e. ( ) ( ) +== Rba ,0, . Believe that ( )( ) =HbaL ;,2 ( )( ) ( )HRLHL ;;,0 22 +== . 

    Following the monograph [1] we introduce Hilbert spaces for 1m  ( m -natural number) 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )( ) HbaLtuAHbaLtutuHbaW mmm ;,,;,:;, 222 =  the scalar multiplication 

( ) ( )( )
( )( ) ( )( )( ) ( ) ( )( ) +=

b

a

mm

b

a

mm

HbaW
tdtvAtuAtdtvtuvu m ,,,

;,2
. 

    Here and in what follows, we will understand all derivatives in space H  the sense of distribution theory [1]. 

For this work, we use spaces ( )( )HbaW m ;,2  at 2,1 == mm .  

    Here, we also assume that for ( ) ( )−== ,, Rba  

( )( ) ( )HRWHW mm ;;, 22 =− , 

but ( ) ( )( )==== + ,0,,0 Rbaba  

( )( ) ( )HRWHW mm ;;,0 22 += . 

    Let us note some properties of the space ( )( )HbaW m ;,2  [1]: 
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This is called the intermediate derivative theorem. 

2.If ( )HRWu m ;2 +  then the operator 
( )( )0tuuL k

k =  is a continuous operator from the space ( )( )HbaW m ;,2  

in 1,0,
2

1 −=
−−

mkH
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where  bat ,0  . When researching local issues, we need to find the following subspaces ( )( )HbaW ;,2

2   
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This fact flows from the theorem on continuation [1]. At ( )( )  − baHbaWeH tA 0,;,, 2

2
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Thus, ( )( )HbaWe tA ;,2

2−  , at 
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3H . Conversely, if ( )HRWe tA ;2
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−  , then it follows from the trace 

theorem that 
2
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where A  a positive definite self-adjoint operator,  
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3. ON THE EXİSTENCE OF REGULAR SOLUTİON OF BOUNDARY VALUE PROBLEMS 

Consider in a separable Hilbert space  boundary value problems 

( )
( ) ( ) ( )
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=+++− 21

2

2

2

                   (1) 

( ) ( ) ( ) 0,00 ' == TuuSu ,                                                              (2) 

where ( ) ( )tftu ,  vector function defined in ( )T,0  almost everywhere with values in  

H , the operator coefficients satisfy the conditions: 
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2) ( )t  numeric function 

( )
( )
( ) ( )








=

TtTtt

tt
t

,0,,,

,0,

00

2

0

2






 

 

where 0,0   ; 

3) operators ( )tA1 , ( )tA 2  at each ( )Tt ,0  linear; ( ) 1

1

−AtA , ( ) 2

2

−AtA  are restricted H   

( ) −1

1sup AtA
t

, ( )Tt ,0 , ( ) −2

2sup AtA
t

, ( )Tt ,0 ; 

4) operator 
2

1
2

3: HHS →  linear, 






2
3

2
1 , HHLS . 

    Definition 1. If at ( ) ( )( )HTLtf ;,02  exists a vector function ( ) ( )HRWtu ;2

2 + , satisfying equation (1) 

almost everywhere, then we will call it a regular solution of equation (1). 

    Definition 2. If at ( ) ( )( )HTLtf ;,02  there is a regular solution ( ) ( )HRWtu ;2
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satisfies the boundary conditions (2) in the sense of convergence 
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then ( )tu  will be called a regular solution of problem (1), (2). 
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and the following estimates hold 
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 , 

then we say that problem (1), (2) is regularly solvable. 
 
4. THE MAIN RESULTS 
    First, we will investigate the regular solvability of the problem 
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    Let us now prove the regular solvability theorem for problem (3), (4). 
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functions ( )tf1
, i.e.  
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in  T,0  almost everywhere because ( )tu
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( ) ( )
2

300 Htt −   , ( ) ( )
2

30

'

0

' Htt −   . It follows from the second equation that 

( ) ( )He
ATt




 −−=

−

34
0 . Considering this expression in the third and fourth equations, we obtain 

( )( ) ( ) ( ) ( ) ( ) ++−−−=−−+
−−−

21003

2

21
0000 









 AtTtATtAt
eTetteEe

( )( ) ( ) ( )( )0

'

0

'1

3

2 0 ttAeE
ATt




 −=++ −−

. 

Thus, in order to define 1 , 
2 , 3 , 

4 we obtain the following system of equations 

( ) ( )
( )

( )( )
( )( )














=+−−−

=−−+

=−

=+++

−−

−−

−−

−

4321

33

2

21

231

1211

00

0

0

0

2



















ATtAt

ATtAt

AttT

At

eAEe

eEe

e

eASEASE

                                      (8) 

 

where ( ) ( ) ( ) ( )Tett
ATt





 
−

−−= 02

001 , ( )T −=2 , ( ) ( )003 tt   −= , ( ) ( )004 tt   −=  Hence it 

follows that 1 , 2 , 3 , 
2

34 H , moreover, all vectors 1 , 2 , 3 , 4 known. It follows from the third and 

fourth equations of system (8) that 

( ) ( )433

2

2
0112 











++
















+−








−=

−Tt
eE                                       (9) 
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and 

( ) ( )433

2

1

2 00 112 










++
















−+








+=

−− TtAt
eEe .                           (10) 

Thus, from (10) it follows that  

( ) ( ) ( )( ) ( )431

12

3
00 2 


−−−++=

−−− AtTt
eeE .                         (11) 

For the correctness of the definition, we show that the operator ( ) ( ) ( )( ) 12 0 −−
−++

Tt
eE


  exists and 

is limited. From the spectral expansion of the operator A  follows that 

( ) ( ) ( )( )
( ) ( ) ( )



−

−−

−++
=−++

0

0

0

2

12 1








 Ed

e
eE

Tt

Tt
, 

at ( )( )00   A  

( ) ( ) 
−++

− 


Tt
e 02

1

( ) ( )


+

−
+

+ − 



 Tt
e 02

1

11

( )


+

−
−

+ − 



 Tt
e 02

1

11





 −−+
=

+

−
−

+


1

1

11
. 

Thus, taking into account (11) in (10), we obtain 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )




 −−−++−++=

−−−−

431

122

2
000 22 

 AtATtTt
eeEeE  

or 

( ) ( ) ( )( ) ( ) ( ) ( )( )  ( )43

122

2
2

1
2 000  

−−−+++−−=
−

−−− AtATtTt
eeeE . 

Then it follows from the first equation of system (8) that 

( ) ( ) ( ) ( ) ( ) ( )( )TtATt
eEeASEASE

−−−
+−−−++ 00 2

1


 , 

( ) ( ) ( )( ) ( )







+−+−−

−−−

431

12

2

1
00 

 AtTt
eeE . 

Next, we denote 
2

111 HA =   and acting on both sides of the last equation we get 

( ) ( ) 111  =−++ QASEASE , where 
At

eQ 0−
= , 

( ) ( ) ( )( )Tt
eEQ

−
+−−= 02

1


 ( ) ( ) ( )( )  12 0

−−
−++

ATt
eE


 , 

( )ASEA  −+=
2

1
11 ( )431

0 


+
−

Qe
At

. 

It's obvious that 
2

11 H . Thus, in 
2

1H  has the following equation 

                         ( ) ( ) 111  =−++ QESAQE                                    (12) 

Denote by 

                  ( ) ( )
2

1
2

1: HHQESAQEF →−++=                                    (13) 

and show that the operator F  turn to 
2

1H . To do this, we estimate the norm of the operator Q . Now let's show 

that 1Q . Let  

( ) ( ) ( )( )Tt
eEQ

−
+−−= 02

1


 ( ) ( ) ( )( )  12 0

−−
−++

ATt
eE


 . 

It's obvious that 

( )

( ) ( ) ( )

( ) ( )ATt

Tt

A e

e
Q

0

0

2

2

1 sup




 



−++

+−−
=

−



. 
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Let us show that 1Q . Let 1)   . Then 

( )

( ) ( ) ( )

( ) ( ) ( )









f
e

e
ATt

Tt

A

=
−++

+−−
−


0

0

2

2

sup

 

. 

It is obvious that at 00    

( ) ( ) ( )
=−=

−



42 02

0

' Tt
eTtf ( ) ( )

08 02

0

2 −
− 


Tt

eTt . 

Thus, ( )f  monotonically decreasing function, so 
( )

( ) ( ) ( )

( ) ( ) 1sup
0

0

2

2


−++

+−−
−


ATt

Tt

A e

e




 


 

because from the inequality ( ) ( )
++−

− 


Tt
e 02 ( ) ( )


Tt

e
−

−++ 02
. Follows that 

( )



202


−Tt

e . Because 0,00 − Tt , then this inequality is true. 

2) Let   ,  and ( ) ( )


Tt
e

−
+− 02

, ( )







+

−
−

−
ln

2

1 1

0 Tt . 

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )














Tt

Tt

ATt

Tt

e

e

e

e
−

−−

−++

++−
=

−++

+−−

0

0

0

0

2

2

2

2

. 

Because ( ) ( ) ( )
=−=

−



42 02

0

' Tt
eTtf ( ) ( )

08 02

0 −
− 


Tt

eTt , i.e. ( )f  increases monotonically  

( )

( ) ( ) ( )

( ) ( ) 1sup
0

0

2

2


+

−
=

−++

+−−
−

 











ATt

Tt

A e

e
. 

Now , 

( ) ( )


Tt
e

−
+− 02

, i.e. ( )







+

−
−

−
ln

2

1 1

0 Tt  

( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )















f
e

e

e

e
Tt

Tt

ATt

Tt

=
−++

−−+
=

−++

+−−
−

−−

0

0

0

0

2

2

2

2

. 

Then  

( ) ( ) ( )
=−=

−



42 02

0

' Tt
eTtf ( ) ( ) ( )TteTt

Tt
−−

−

0

2

0
08




,
 

i.e. function ( )f  for ( )







+

−
−

−
ln

2

1 1

0 Tt  is decreasing and ( ) 1sup ' f . Hence 

=
−




1
0 QeQ
At





− At

e 0
, 1 . Then for the solution of equation (12) we show that 

2
1

2
1  CF  . Since at 

2
1H  ( ) ( ) QESAQEF −++= , then we multiply by 

2
1H  both parts 

of this equality are scalar on ( )QE −  в 
2

1H  we have 

( )( ) ( ) ( )( ) ( ) ( )( ) QEQESAQEQEQEF −−+−+=− ,,, . 

Then ( )( ) ( )( ) ( ) ( )( ) +−=−−+−=−
2222 ,Re,Re,Re  QQEQESAQEQEF

( ) ( )( ) QEQESA −−+ ,Re . Because ( ) ( )( ) 0,Re −−  QEQESA , 0 , that 

( )( ) ( )
222

1,Re  −=−− QQEF . 

Hence  

( ) ( )( ) ( ) ( )  +−−− 1,Re1
2

FQEFQEF . 

Hence we have that 



 CF =

+

−


1

1
. If SAK = , 0Re K  

( ) ( )KQEQEF −++=   and ( ) ( )  KQEQEF −++=
 

( ) ( ) ( ) ( )QEKQEQEQEF −−+−=− 22
 

and 
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( ) ( )( ) ( ) ( )( ) QEQEKQEQEF −−+−=− ,,, 22
. 

( )( ) ( ) 221,Re  −− QEF . If ( ) yQE =−  , then 

( )( ) ( ) ( )
2

121
1, yQEyQEyF −− −−−   or ( )( ) yFyQE −

−−
121  . 

Because ( )( ) ( ) yyQE  −−−
−

11
12

, then 0, 1

2

1  CyCyF . Then F  reversible, so we can solve 

equation (12): 1

1

1  −= F . Because 
2

31

1

111 , HAA == −  . Then, obviously, we can define 32 , , 

2
34 H . Thus, the vector function ( ) ( )( )HTWtu s ;,02

,2 . On the other side 

( )( )
=

2

;,00
2 HTL

uP ( )
( )( )

2

2

;,0

2

2

2

2

+−

HTL

uAt
dt

ud


( )( )

( )













+− t

dt

ud

t
HTL

max

2

;,02

( )( )

2

;,0

2

2 HTL
uA  

we get that the operator 0P  continuous out ( )( )HTW S ;,0
2

,2

0

 on the ( )( )HTL ;,02 . Then the Banach 

theorem on the inverse operator implies the assertion of the theorem. The theorem is proved. 

    Lemma 2. For any ( ) ( )( )HTWtu S ;,02

,2  the following inequalities hold 

( )( )
( ) ( )( )HTL

HTL

uP
td

ud
A

;,0022

;,0

2

2

21

min

1

 +
 ,                                    (14) 

( )( )
( ) ( )( )HTL

HTL

uP
td

ud
A

;,00

;,0
2

21

,min

1


 .                                    (15) 

    Proof. It follows from the proof of Lemma 1 that  

( )( )


−

2

;,0

2

2

2
1

2 HTL
dt

ud


( )( )

2

;,0

2

2

2
1

2 HTL
td

ud−


( )( )
2

2

;,0

22
1

2

++
HTL

uA
( )( )

2

;,02 HTL
td

ud
A .          (16) 

On the other hand at ( ) ( )( )HTWtu S ;,0
2

,2

0

  

( )( )

( ) ( ) −




=








= 

TT

HTL

tuAtuA
td

ud
A

td

ud
A

td

ud
A

0

'2
1

2
3

0

2

;,0

,,

2

( ) ( ) +




− 0,0Re '2

1
'2

1

uAuSAA

( )( )
++

2

;,0

22
1

2 HTL

uA
( )( )

2

;,0

2

2

2
1

2 HTL
td

ud−
 . 

 

Hence we get that 

( )( )
+

2

;,0

22
1

2 HTL

uA
( )( )

2

;,0

2

2

2
1

2 HTL
td

ud−
 2

( )( )

( ) ( )( )
2

1
''

2

;,0

0,Re2

2

uuSA
td

ud
A

HTL

+ . 

Because ( ) ( )( ) 00,Re2
2

1
'' uuSA , then 

                 
( )( )

+
2

;,0

22
1

2 HTL

uA
( )( )

2

;,0

2

2

2
1

2 HTL
td

ud−
 2

( )( )

2

;,02 HTL
td

ud
A .                        (17) 

Taking into account inequality (17) in (16), we obtain: 

( )( )


2

;,0

22
1

2 HTL

uA
( )( )

2

;,02

4

HTL
td

ud
A   

or  

( )( ) ( )( ) ( )


,min2

1

2

1

;,0
0

2
1

;,0 2
2

=
−

HTL
HTL

uP
td

ud
A

( )( )HTL

uP
;,0

0
2

1

2

−
 , 

i.e. the correctness of inequality (15) is proved. On the other hand, it follows from (16) that 
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( )( )


2

;,0

22
1

2 HTL

uA
( )( )

2

;,0
0

2
1

2 HTL

uP
−

 , i.e. 
( )( )


HıRL

uA
,0

22
1

2


( )( )HTL

uP
;,0

0
2

1

2

−
 . 

Hence we have 

( )( )HTL
uA

;,0

2

2 ( )( )
( )tuAu

tHTL

2
1

;,0

22
1

2
1

max
2

−−
= 

( )( )


HTL

uAu
;,0

22
1

2

  

( ) ( )( )HTL
uP

;,0022 2,min

1


 . 

Inequality (14) is also proved. 
    Lemma 3. Let conditions 1)-3) be satisfied. Then 

( )( )
=

HTL
uP

;,01
2

( ) ( )
( )( )

+

HTL

utA
td

ud
tA

;,0

21

2

( )
( )( )

+

HTL
td

ud
tA

;,0

1

2

( )
( )( )


HTL

utA
;,0

2
2

( )
( )

( )( )HTL
Tt

AtA
;,0

1

1
,0 2

sup −





( )( )

+

HTL
td

ud
A

;,02

( ) ( )
( )

( )( )
−


HTL

Tt

AtA
;,0

2

2
,0

22
2

sup
,min

1



( )( )
( )18.

;,0
2

2 HTL
uA  

It follows from the intermediate derivatives theorem that 

( )( )
( ) HTW

HTL

uC
td

ud
A

;,01

;,0

2
2

2

  and 
( )( )HTL

uA
;,0

2
2

( )( )
( ) HTW

HTL

uC
td

ud
A

;,02

;,0

2
2

2

 . 

Considering this, in (18) it follows that 

( )( )
constuP

HTL


;,01
2 ( ) HTW

u
;,02

2

. 

The lemma is proved. 
    It follows from this lemma and theorem 1 that the operator  

:10 PPP += ( )( ) ( )( )HTLHTW s ;,0;,0 2

2

,2

0

→
 

continuous. 
    Now let's prove the main theorem. 

    Theorem 2. Let conditions 1)-4), 0Re SA  in 
2

1H  and there is an inequality 

( ) ( )
( )

( )( )
+= −


HTL

Tt

AtA
;,0

1

1
,0 2

sup
,min2

1




( ) ( )
( )

( )( )HTL
Tt

AtA
;,0

12

2
,0

22
2

sup
,min

1 −


.       

 

(19) 

Then problem (1), (2) is regularly solvable. 

    Proof. Let us write problem (1), (2) as an equation uPuPuP 10 += , which ( )( )HTWu s ;,0
2

,2

0

 , 

( )( )HTLf ;,02 . By theorem 1, the operator  

( )( ) ( )( )HTLHTWP s ;,0;,0: 2

2

,2

0

0 →  

mutually unique. Then for any ( )( )HTL ;,02  exists ( )( )HTWu s ;,0
2

,2

0

 , such that  

=uP0 . 

Then relatively   we obtain the equation fPP =+ −1

01  in the space ( )( )HTL ;,02 . Then for any 

( )( )HTL ;,02  have 

( )( )
=−

HTL
PP

;,0

1

01
2

 ( )
( )( )

+

HTL
td

ud
tA

;,0

1

2

( )
( )( )

=
HTL

tA
;,02

2

( )
( )( )

+−

HTL
td

ud
AAtA

;,0

1

1

2

( )
( )( )

+ −

HTL
AAtA

;,0

22

2
2

( )
( )( )

+−

HTL
t td

ud
AAtA

;,0

1

1

2

sup ( )
( )( )HTL

t

AAtA
;,0

22

2
2

sup −
.       (20) 



 Journal of Management World 2025, 3: 122-135 

133 

Taking into account inequalities (14) and (15) in (20), we obtain 

( )( )
=−

HTL
PP

;,0

1

01
2


( ) ( )

( )
( )( )

+−


HTL

Tt

AtA
;,0

1

1
,0 2

sup
,min2

1



( ) ( )
( )

( )( ) ( )( )HTLHTL
Tt

AtA
;,0;,0

12

2
,0

22 22

sup
,min

1



=+ −



. 

Therefore, the operator 
1

01

−+ PPE  turn in ( )( )HTL ;,02 . Then ( ) fPPE
11

01

−−+= . Hence we have that 

( ) fPPEPu
11

01

1

0

−−− +=  and 

( )


HTW
uC

;,02 2
2 ( )( ) ( )( ) ( ) constfP

HTLHTWHTL s

=
−→

−

;,0;,0;,0

1

0
2

0
2
,22 1

1

 ( )( )HTL
f

;,02

. 

    The theorem is proved.   
Corollary. Let conditions 1)–3) be satisfied and inequality (19) hold. Then the problem is 

( )
( ) ( ) ( )

( )
( ) ( ) ( )tftutA

td

tud
tAtuAt

td

tud
=+++− 21

2

2

2

                   (21) 

( ) ( ) 0,00 == Tuu ,                                                                       (22) 

regularly solvable. 

The proof follows from theorem 2 when 0=S . Note that if problem (21), (22) is regularly solvable, we can 
prove a more general statement.  

Theorem 3. Let conditions 1), 3) and ( )t  measurable scalar function such that ( )   t0  and there is an 

inequality 

( )
( )

( )
( ) 1sup

1
sup

2

1 2

2
,0

1

1
,0

+= −



−



AtAAtA
ttTt 

  

Then problem (21), (22) is regularly solvable. 
    Proof. Here we also denote by 

( )
( ) ( )tuAt

td

tud
u

td
dPuP 2

2

2

00 +−=






= , ( )
( )

( ) ( )tutA
td

tud
tA

td
dPuP 2111 +=







= , 

( ) ( ) ( )( )0,0;,02

2 TWtu  . 

It's obvious that ( ) ( )( ) ( )( )HTLTWPPP ;,00,0;,0: 2

2

210 →+=  continuous. From lemma 1 for 0=S  

follows that  00 =PKer . Let us prove that the operator 0P  displays space ( ) ( )( )0,0;,02

2 TW  on 

( )( )HTL ;,02 . If we consider the operator 0L  in the space ( )( )HTL ;,02  generated by an operator-

differential expression 

( )
( ) ( )tuAt

td

tud
u

td
dP 2

2

2

0 +−=






 , 

with domain of definition ( ) ( ) ( )( ) 0,0;,0: 2

20 TWuuLD = , then we get that the operator 0L  positive-

definite self-adjoint operator in space ( )( )HTL ;,02  with scope ( ) ( )( ) ( ) ( )( )0,000,0;,02

2 == TuuTW . 

Really 

( )
( )( )

( )
( )( )HTLL vLuvuL

HT ;,000
2;,0

,, = , 

and 

( )
( )( )

( )( )
( )( )

( ) ( )( ) =+







−=  HTLHTL

TT

L uuuAtduuAttdu
td

ud
uuL

HT ;,0

2

0

2

;,0

0

2

0

2

2

0 22;,0
,,,,   

( )( )

2

;,0

2

0
2 HTL

u= , 

i.e. EL 2

00 =  in ( )( )HTL ;,02 . Then the operator 0L  turn into ( )( )HTL ;,02 , 1

0

−L  bounded in space 

( )( )HTL ;,02 . Thus the problem 

( )
( ) ( ) ( )tftuAt

td

tud
=+ 2

2

2

                                              (23) 
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( ) ( ) 0,00 == Tuu                                                            (24) 

regularly solvable. To prove the regular solvability of problem (21), (22), we will use the following inequalities 

( )( ) 

12

;,0

2

2


HTL

uA
( )( )

2

;,00
2 HTL

uP                                 (25) 

and 

( )( ) 2

1

;,02



HTL
td

ud
A

( )( )HTL
uP

;,00
2

,                           (26) 

which follow that from (14) and (15) with 0=S . Next, writing problem (21), (22) in the form 

( ) ( ) ( )( ) ( ) ( )( )HTLtfTWtuPuuPuP ;,0,0,0;,0: 2

2

210 +=  

and repeating the arguments in the proof of theorem 2, we complete the proof of theorem. Consider one example. 

    Example. Let ( ) ( ),0,0 = TQ . In the area Q  consider the following boundary value problem 

( )
( )

( )
( )

( )
( )

( )
( )

2

22

2

2

2

2 ,
,

,
,

,,
,,

x

txu
txq

tx

txu
txp

x

txu
t

td

txu
txu

tx
P




+




+




+


=
















   (27) 

( ) ( ) 0,0, == Txxu , ( ) ( ) 0,0, == ttu                                                                  (28) 

where ( ) ( )QLTxf 2,  , ( )   t0 , ( )Txp , , ( )Txq ,  measurable and bounded functions in the 

domain Q . Define in space ( );02L  operator ( ) ( )xyxyA ''2 −= , ( )  '2 : yyAD =  is an absolute continuous 

function on   ( ) ( ) ,0,,0 2

'' Lxy  , ( ) ( ) ( ) ( )xytxpxytA '

11 ,= , ( ) ( ) xyyAD :1 =  is an absolute 

continuous function on  ,,0   ( ) ( ),02

' Lxy   and ( ) ( ) ( ) ( )xytxqxytA ,12 = , 

( ) ( ) ( ) ( ) ,0: 22 LxyxyAD = . 

    Then it is obvious that 

,  . 

Then from theorem 3 we obtain the following 

    Theorem 4. Let ( )t  measurable function on  T,0 , moreover ( )   t0 , ( )txp , , ( )txq ,  

measurable bounded functions in the domain Q , moreover, 

( )
( )

( )
( ) 1,sup

1
,sup

2

1

,,

+


xtqxtp
QxtQxt 

/\ 

Then for any ( ) ( )QLtxf 2,   exists a vector function ( ) ( )QWtxu 2

2,2,  , which satisfies equation (27) in Q  almost 

everywhere on the border Q  condition (28) and we have the estimates 

( ) ( )
( ) 


















+





QQ

tdxdxtfconstdtxd
t

txu

x

txu 2

2

2
2

2

2

,
,,

. 
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